Chuangpeng Shen , Zhisen Pan , Wenmin Xie , Jian Zhao , Deyu Miao , Ling Zhao , Min Liu , Yanhua Zhong , Chong Zhong , Frank J. Gonzalez , Wei Wang , Yong Gao , Changhui Liu
{"title":"Hepatocyte-specific SLC27A4 deletion ameliorates nonalcoholic fatty liver disease in mice via suppression of phosphatidylcholine-mediated PXR activation","authors":"Chuangpeng Shen , Zhisen Pan , Wenmin Xie , Jian Zhao , Deyu Miao , Ling Zhao , Min Liu , Yanhua Zhong , Chong Zhong , Frank J. Gonzalez , Wei Wang , Yong Gao , Changhui Liu","doi":"10.1016/j.metabol.2024.156054","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The protein Solute carrier family 27 member 4 (SLC27A4) is crucial for fatty acid synthesis and β-oxidation, but its role in hepatic steatosis and nonalcoholic fatty liver disease (NAFLD) progression is not fully understood.</div></div><div><h3>Methods</h3><div>Mice with AAV-mediated overexpression of <em>Slc27a4</em> in liver and hepatocytes-specific deletion of <em>Slc27a4</em> were fed a standard chow diet, a high-fat diet (HFD), or a methionine and choline-deficient diet (MCD). Serum and liver tissues were collected and analyzed by biochemical assay, histology, lipidomic analysis, RNA-seq analysis, qPCR, western blot and immunofluorescence.</div></div><div><h3>Results</h3><div>This study found elevated expression of SLC27A4 in individuals with NAFLD and OAPA-treated MPHs cells, leading to increased lipid accumulation and diet-induced liver steatosis, inflammation, and fibrosis. Conversely, hepatocyte-specific deletion of <em>Slc27a4</em> improved the development of both NAFLD and NASH. SLC27A4 overexpression resulted in increased hepatic pregnane X receptor (PXR) expression and accumulation of phosphatidylcholine (PC), which activates PXR signaling and inducing SLC27A4 expression. PXR overexpression hinders the protective impact of <em>Slc27a4</em> deletion on lipid accumulation and inflammation, whereas its deficiency in mice reduces the effect of <em>Slc27a4</em> overexpression on NAFLD development.</div></div><div><h3>Conclusion</h3><div>These results indicate that SLC27A4 plays a critical role of lipid accumulation and inflammation, and is implicated in the development of NAFLD progression, rendering it potentially actionable target for NAFLD treatment.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"162 ","pages":"Article 156054"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049524002828","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The protein Solute carrier family 27 member 4 (SLC27A4) is crucial for fatty acid synthesis and β-oxidation, but its role in hepatic steatosis and nonalcoholic fatty liver disease (NAFLD) progression is not fully understood.
Methods
Mice with AAV-mediated overexpression of Slc27a4 in liver and hepatocytes-specific deletion of Slc27a4 were fed a standard chow diet, a high-fat diet (HFD), or a methionine and choline-deficient diet (MCD). Serum and liver tissues were collected and analyzed by biochemical assay, histology, lipidomic analysis, RNA-seq analysis, qPCR, western blot and immunofluorescence.
Results
This study found elevated expression of SLC27A4 in individuals with NAFLD and OAPA-treated MPHs cells, leading to increased lipid accumulation and diet-induced liver steatosis, inflammation, and fibrosis. Conversely, hepatocyte-specific deletion of Slc27a4 improved the development of both NAFLD and NASH. SLC27A4 overexpression resulted in increased hepatic pregnane X receptor (PXR) expression and accumulation of phosphatidylcholine (PC), which activates PXR signaling and inducing SLC27A4 expression. PXR overexpression hinders the protective impact of Slc27a4 deletion on lipid accumulation and inflammation, whereas its deficiency in mice reduces the effect of Slc27a4 overexpression on NAFLD development.
Conclusion
These results indicate that SLC27A4 plays a critical role of lipid accumulation and inflammation, and is implicated in the development of NAFLD progression, rendering it potentially actionable target for NAFLD treatment.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism