Double negative T cells promote surgery-induced neuroinflammation, microglial engulfment and cognitive dysfunction via the IL-17/CEBPβ/C3 pathway in adult mice
Ying Chen , John Man-Tak Chu , Jia-Xin Liu , Yu-Juan Duan , Zheng-Kai Liang , Xin Zou , Ming Wei , Wen-Jun Xin , Ting Xu , Gordon Tin-Chun Wong , Xia Feng
{"title":"Double negative T cells promote surgery-induced neuroinflammation, microglial engulfment and cognitive dysfunction via the IL-17/CEBPβ/C3 pathway in adult mice","authors":"Ying Chen , John Man-Tak Chu , Jia-Xin Liu , Yu-Juan Duan , Zheng-Kai Liang , Xin Zou , Ming Wei , Wen-Jun Xin , Ting Xu , Gordon Tin-Chun Wong , Xia Feng","doi":"10.1016/j.bbi.2024.10.029","DOIUrl":null,"url":null,"abstract":"<div><div>CD3(+) CD4(−) CD8(−) double negative T cells (DNTs) manifest themselves in autoimmune diseases and associated inflammation. In the central nervous system, the increased presence of DNTs is associated with the progression of neurological conditions and brain injury. Active DNTs that produce IL-17 have been regarded as a pro-inflammatory phenotype. The IL-17 signaling pathway mediates neuroinflammatory responses by inducing glial activation and producing inflammatory factors. Neuroinflammation is considered integral to the pathogenesis of perioperative neurocognitive disorders (PNDs), commonly developed after surgery in susceptible patients. We and others have demonstrated a significant role for complement C3 in surgery-induced neuroinflammation and cognitive impairment but the regulatory mechanisms for this remain unexplored. We hypothesized that surgery induces DNT infiltration into the CNS that in turn upregulates complement C3 expression and this causes changes that contribute to cognitive impairment. Using an adult murine abdominal surgery model, we investigated perioperative changes in cognitive performance, quantifying the presence of T cell subsets and phenotype, IL-17 signaling pathway activation, glial cell activation and C3 expression in the brain. Postoperative IL-17 specific inhibitor GSK2981278 administration or preoperatively conditional CEBPβ knock-down by AAV9 viral vector were then applied to evaluate the effect of inhibiting IL-17 signaling pathway on postoperative C3 expression and cognitive performance. The results showed an increased hippocampus infiltration of DNTs with augmented IL-17 production, along with C3 upregulation and cognitive impairment. Both inhibition of IL-17 or knock-down of CEBPβ significantly suppressed C3 expression, synaptic engulfment by microglia and attenuated cognitive impairment. These findings indicate that DNTs promote postoperative neuroinflammation and cognitive impairment via the IL-17/CEBPβ/C3 pathway and targeting this IL-17 axis could be a potential therapeutic strategy to ameliorate postoperative neuroinflammation and cognitive impairment.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"123 ","pages":"Pages 965-981"},"PeriodicalIF":8.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159124006706","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CD3(+) CD4(−) CD8(−) double negative T cells (DNTs) manifest themselves in autoimmune diseases and associated inflammation. In the central nervous system, the increased presence of DNTs is associated with the progression of neurological conditions and brain injury. Active DNTs that produce IL-17 have been regarded as a pro-inflammatory phenotype. The IL-17 signaling pathway mediates neuroinflammatory responses by inducing glial activation and producing inflammatory factors. Neuroinflammation is considered integral to the pathogenesis of perioperative neurocognitive disorders (PNDs), commonly developed after surgery in susceptible patients. We and others have demonstrated a significant role for complement C3 in surgery-induced neuroinflammation and cognitive impairment but the regulatory mechanisms for this remain unexplored. We hypothesized that surgery induces DNT infiltration into the CNS that in turn upregulates complement C3 expression and this causes changes that contribute to cognitive impairment. Using an adult murine abdominal surgery model, we investigated perioperative changes in cognitive performance, quantifying the presence of T cell subsets and phenotype, IL-17 signaling pathway activation, glial cell activation and C3 expression in the brain. Postoperative IL-17 specific inhibitor GSK2981278 administration or preoperatively conditional CEBPβ knock-down by AAV9 viral vector were then applied to evaluate the effect of inhibiting IL-17 signaling pathway on postoperative C3 expression and cognitive performance. The results showed an increased hippocampus infiltration of DNTs with augmented IL-17 production, along with C3 upregulation and cognitive impairment. Both inhibition of IL-17 or knock-down of CEBPβ significantly suppressed C3 expression, synaptic engulfment by microglia and attenuated cognitive impairment. These findings indicate that DNTs promote postoperative neuroinflammation and cognitive impairment via the IL-17/CEBPβ/C3 pathway and targeting this IL-17 axis could be a potential therapeutic strategy to ameliorate postoperative neuroinflammation and cognitive impairment.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.