{"title":"Detection of DNA methylation from buccal swabs using nanopore sequencing to study stunting.","authors":"Alim El-Hakim, Inswasti Cahyani, Muhammad Zulfikar Arief, Gilang Akbariani, Asep Muhamad Ridwanuloh, Syam Budi Iryanto, Ratih Rahayu, Daeng Deni Mardaeni, Vincentius Budhyanto, Yusnita, Wening Sari, Anggi Pn Hidayati, Intan Razari, Silviatun Nihayah, Kinasih Prayuni, Chandra Utomo, Ratih Asmana Ningrum, Susanti Susanti, Ahmad Utomo","doi":"10.1080/15592294.2024.2418717","DOIUrl":null,"url":null,"abstract":"<p><p>Stunting is the result of chronic malnutrition due to the lack of micronutrient-based methyl donors required for epigenetic programming during the first 1000 days of life. Methylation studies using bisulfite conversion from blood DNA are invasive and may not be practical for large-scale epidemiological investigation or nutrition intervention programs. Buccal epithelial methylation may reflect early germline methylation. Therefore, buccal cells can serve as convenient sample sources to collect biomarkers associated with the risk of stunting. This study aims to describe the feasibility of nanopore adaptive sampling in detecting DNA methylation from children's buccal DNA. We used adaptive sampling of Oxford Nanopore Technology on barcoded samples to describe differential methylation associated with malnutrition. Overall, the level of 5-methylcytosine (5mC) was lower in stunted children than in normal children. We also found differentially methylated regions at the MIR6724 and RNA45SN1 gene loci on chromosome 21, which was higher in stunted children than in normal children. We described and detected differential DNA methylation in the locus previously not known to be associated with stunting. Interestingly, this locus on chromosome 21 has been implicated in the stunted phenotype of Down syndrome.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2418717"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540103/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2024.2418717","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stunting is the result of chronic malnutrition due to the lack of micronutrient-based methyl donors required for epigenetic programming during the first 1000 days of life. Methylation studies using bisulfite conversion from blood DNA are invasive and may not be practical for large-scale epidemiological investigation or nutrition intervention programs. Buccal epithelial methylation may reflect early germline methylation. Therefore, buccal cells can serve as convenient sample sources to collect biomarkers associated with the risk of stunting. This study aims to describe the feasibility of nanopore adaptive sampling in detecting DNA methylation from children's buccal DNA. We used adaptive sampling of Oxford Nanopore Technology on barcoded samples to describe differential methylation associated with malnutrition. Overall, the level of 5-methylcytosine (5mC) was lower in stunted children than in normal children. We also found differentially methylated regions at the MIR6724 and RNA45SN1 gene loci on chromosome 21, which was higher in stunted children than in normal children. We described and detected differential DNA methylation in the locus previously not known to be associated with stunting. Interestingly, this locus on chromosome 21 has been implicated in the stunted phenotype of Down syndrome.
期刊介绍:
Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed.
Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to):
DNA methylation
Nucleosome positioning and modification
Gene silencing
Imprinting
Nuclear reprogramming
Chromatin remodeling
Non-coding RNA
Non-histone chromosomal elements
Dosage compensation
Nuclear organization
Epigenetic therapy and diagnostics
Nutrition and environmental epigenetics
Cancer epigenetics
Neuroepigenetics