Jiahong Zhong , Xihui Yu , Yunming Zhong , Liya Tan , Fayou Yang , Jialan Xu , Jianlin Wu , Zhuomiao Lin
{"title":"GSK-3β inhibitor amplifies autophagy-lysosomal pathways by regulating TFEB in Parkinson's disease models","authors":"Jiahong Zhong , Xihui Yu , Yunming Zhong , Liya Tan , Fayou Yang , Jialan Xu , Jianlin Wu , Zhuomiao Lin","doi":"10.1016/j.expneurol.2024.115033","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson's disease (PD), a common neurodegenerative disorder characterized by degeneration of the substantia nigra and a marked increase in Lewy bodies in the brain, primarily manifests as motor dysfunction. Glycogen synthase kinase-3 beta (GSK-3β) is known to play a critical role in various pathological processes of neurodegenerative diseases. However, the impact of GSK-3β inhibitors on PD progression and the underlying molecular mechanisms responsible for the effects have not been fully elucidated. Using in vitro and mouse models of 1-methyl-4-phenylpyridine (MPP<sup>+</sup>)-or methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, we found that inhibition of GSK-3β activity alleviated mitochondrial damage, cell apoptosis, and neuronal cell loss by promoting the nuclear translocation of transcription factor EB (TFEB), thereby amplifying the autophagy-lysosomal pathway (ALP). Importantly, siRNA silencing of the TFEB gene impaired the GSK-3β inhibitor-mediated activation of the ALP pathway, thus negating the metabolic support required for neuronal functional improvement. Short-term treatment with the GSK-3β inhibitor significantly ameliorated motor dysfunction and improved motor coordination in model mice with MPTP-induced PD. GSK-3β inhibition increased the ALP and TFEB activities in the mice, thereby reducing α-synuclein aggregation and neuronal damage. In conclusion, our study demonstrates that inhibition of GSK-3β activity can delay the pathological processes of PD via promotion of the TFEB–ALP pathway, potentially providing a novel therapeutic target for this neurodegenerative disorder.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"383 ","pages":"Article 115033"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624003595","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD), a common neurodegenerative disorder characterized by degeneration of the substantia nigra and a marked increase in Lewy bodies in the brain, primarily manifests as motor dysfunction. Glycogen synthase kinase-3 beta (GSK-3β) is known to play a critical role in various pathological processes of neurodegenerative diseases. However, the impact of GSK-3β inhibitors on PD progression and the underlying molecular mechanisms responsible for the effects have not been fully elucidated. Using in vitro and mouse models of 1-methyl-4-phenylpyridine (MPP+)-or methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, we found that inhibition of GSK-3β activity alleviated mitochondrial damage, cell apoptosis, and neuronal cell loss by promoting the nuclear translocation of transcription factor EB (TFEB), thereby amplifying the autophagy-lysosomal pathway (ALP). Importantly, siRNA silencing of the TFEB gene impaired the GSK-3β inhibitor-mediated activation of the ALP pathway, thus negating the metabolic support required for neuronal functional improvement. Short-term treatment with the GSK-3β inhibitor significantly ameliorated motor dysfunction and improved motor coordination in model mice with MPTP-induced PD. GSK-3β inhibition increased the ALP and TFEB activities in the mice, thereby reducing α-synuclein aggregation and neuronal damage. In conclusion, our study demonstrates that inhibition of GSK-3β activity can delay the pathological processes of PD via promotion of the TFEB–ALP pathway, potentially providing a novel therapeutic target for this neurodegenerative disorder.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.