Observation of floating surface state in obstructed atomic insulator candidate NiP2

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiang-Rui Liu, Ming-Yuan Zhu, Yuanwen Feng, Meng Zeng, Xiao-Ming Ma, Yu-Jie Hao, Yue Dai, Rong-Hao Luo, Yu-Peng Zhu, Kohei Yamagami, Yi Liu, Shengtao Cui, Zhe Sun, Jia-Yu Liu, Yu Huang, Zhengtai Liu, Mao Ye, Dawei Shen, Bing Li, Chang Liu
{"title":"Observation of floating surface state in obstructed atomic insulator candidate NiP2","authors":"Xiang-Rui Liu, Ming-Yuan Zhu, Yuanwen Feng, Meng Zeng, Xiao-Ming Ma, Yu-Jie Hao, Yue Dai, Rong-Hao Luo, Yu-Peng Zhu, Kohei Yamagami, Yi Liu, Shengtao Cui, Zhe Sun, Jia-Yu Liu, Yu Huang, Zhengtai Liu, Mao Ye, Dawei Shen, Bing Li, Chang Liu","doi":"10.1038/s41535-024-00699-3","DOIUrl":null,"url":null,"abstract":"<p>Obstructed atomic insulator is recently proposed as an unconventional material, in which electric charge centers localized at sites away from the atoms. A half-filling surface state would emerge at specific interfaces cutting through these charge centers and avoid intersecting any atoms. In this article, we utilized photoemission spectroscopy and density functional theory calculations to study one of the obstructed atomic insulator candidates, NiP<sub>2</sub>. A floating surface state with large effective mass that is close to the Fermi level and isolated from all bulk states is resolved on the (100) cleavage plane, implying better catalytic activity in this plane than the previously studied surfaces. Density functional theory calculation results elucidate that this floating surface state is originated from the obstructed Wannier charge centers, albeit underwent surface reconstruction. Our findings not only shed lights on the study of obstructed atomic insulators, but also provide possible route for development of new catalysts.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"4 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00699-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Obstructed atomic insulator is recently proposed as an unconventional material, in which electric charge centers localized at sites away from the atoms. A half-filling surface state would emerge at specific interfaces cutting through these charge centers and avoid intersecting any atoms. In this article, we utilized photoemission spectroscopy and density functional theory calculations to study one of the obstructed atomic insulator candidates, NiP2. A floating surface state with large effective mass that is close to the Fermi level and isolated from all bulk states is resolved on the (100) cleavage plane, implying better catalytic activity in this plane than the previously studied surfaces. Density functional theory calculation results elucidate that this floating surface state is originated from the obstructed Wannier charge centers, albeit underwent surface reconstruction. Our findings not only shed lights on the study of obstructed atomic insulators, but also provide possible route for development of new catalysts.

Abstract Image

观测受阻原子绝缘体候选物质 NiP2 的浮面状态
阻碍原子绝缘体是最近提出的一种非传统材料,其中的电荷中心位于远离原子的位置。半填充表面态会出现在穿过这些电荷中心的特定界面上,并避免与任何原子相交。在这篇文章中,我们利用光发射光谱和密度泛函理论计算研究了其中一种受阻原子绝缘体候选物质--NiP2。在(100)裂解面上解析出了一个接近费米级并与所有体态隔离的具有较大有效质量的浮动表面态,这意味着在该平面上的催化活性优于之前研究的表面。密度泛函理论计算结果阐明,这种浮动表面态源于受阻的万尼尔电荷中心,尽管它经历了表面重构。我们的发现不仅为受阻原子绝缘体的研究提供了启示,也为新型催化剂的开发提供了可能的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信