{"title":"Griesmer type bounds for additive codes over finite fields, integral and fractional MDS codes","authors":"Simeon Ball, Michel Lavrauw, Tabriz Popatia","doi":"10.1007/s10623-024-01519-2","DOIUrl":null,"url":null,"abstract":"<p>In this article we prove Griesmer type bounds for additive codes over finite fields. These new bounds give upper bounds on the length of maximum distance separable (MDS) codes, codes which attain the Singleton bound. We will also consider codes to be MDS if they attain the fractional Singleton bound, due to Huffman. We prove that this bound in the fractional case can be obtained by codes whose length surpasses the length of the longest known codes in the integral case. For small parameters, we provide exhaustive computational results for additive MDS codes, by classifying the corresponding (fractional) subspace-arcs. This includes a complete classification of fractional additive MDS codes of size 243 over the field of order 9.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"68 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01519-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article we prove Griesmer type bounds for additive codes over finite fields. These new bounds give upper bounds on the length of maximum distance separable (MDS) codes, codes which attain the Singleton bound. We will also consider codes to be MDS if they attain the fractional Singleton bound, due to Huffman. We prove that this bound in the fractional case can be obtained by codes whose length surpasses the length of the longest known codes in the integral case. For small parameters, we provide exhaustive computational results for additive MDS codes, by classifying the corresponding (fractional) subspace-arcs. This includes a complete classification of fractional additive MDS codes of size 243 over the field of order 9.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.