Instantaneous Heat Source Response in a Rotating Orthotropic Thermoelastic Medium Using Three-Phase-Lag Model

IF 0.6 4区 工程技术 Q4 MECHANICS
Subhadip Karmakar, Smita Pal Sarkar
{"title":"Instantaneous Heat Source Response in a Rotating Orthotropic Thermoelastic Medium Using Three-Phase-Lag Model","authors":"Subhadip Karmakar,&nbsp;Smita Pal Sarkar","doi":"10.1134/S0025654424600090","DOIUrl":null,"url":null,"abstract":"<p>This article highlights the study of thermoelastic interaction in a homogeneous, orthotropic, rotating medium due to the influence of an instantaneous heat source. This study employs the three-phase-lag model. A differential equation in vector-matrix form has been formulated with the help of combined Laplace–Fourier transformation and the solution is obtained by using the eigenvalue approach. The Gaussian quadrature formula and the Bellman method are employed to numerically estimate the displacement components, temperature, and thermal stress components. Finally, the numerical outcomes are depicted graphically and compared with those of the Lord–Shulman and Green–Naghdi type III models.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424600090","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article highlights the study of thermoelastic interaction in a homogeneous, orthotropic, rotating medium due to the influence of an instantaneous heat source. This study employs the three-phase-lag model. A differential equation in vector-matrix form has been formulated with the help of combined Laplace–Fourier transformation and the solution is obtained by using the eigenvalue approach. The Gaussian quadrature formula and the Bellman method are employed to numerically estimate the displacement components, temperature, and thermal stress components. Finally, the numerical outcomes are depicted graphically and compared with those of the Lord–Shulman and Green–Naghdi type III models.

Abstract Image

使用三相滞后模型的旋转正交热弹性介质中的瞬时热源响应
本文重点研究了均质、各向同性、旋转介质在瞬时热源影响下的热弹性相互作用。该研究采用了三相滞后模型。在拉普拉斯-傅里叶变换的帮助下,以矢量矩阵形式列出了微分方程,并通过特征值方法求得了解。利用高斯正交公式和贝尔曼法对位移分量、温度和热应力分量进行数值估算。最后,对数值结果进行了图形描述,并与 Lord-Shulman 模型和 Green-Naghdi III 型模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信