Y. Xia, B. Zhou, C. Zhang, X. Zhu, S. Zhou, J. Li, H. Wang, C. Wang
{"title":"Analytical Method Based on Machine Learning (AM-BML) for a Cased Borehole under Anisotropic In-Situ Stresses in Formation","authors":"Y. Xia, B. Zhou, C. Zhang, X. Zhu, S. Zhou, J. Li, H. Wang, C. Wang","doi":"10.1134/S0025654424603884","DOIUrl":null,"url":null,"abstract":"<p>In this work, an analytical method based on machine learning (AM-BML) is proposed to predict the stress distribution around a cased borehole in the formation with anisotropic in-situ stresses. Firstly, the stress field equations with undetermined coefficients are derived using the elasticity theory to formulate the stress field near the cased borehole. Secondly, the regression functions of a machine learning algorithm, least squares support vector machine (LS-SVM), are constructed according to the derived stress field equations. Thirdly, the undetermined coefficient equations are developed to determine the undetermined coefficients in the derived stress field equations according to the constructed LS-SVM regression functions and the derived stress field equations. The derived stress field equations and the developed undetermined coefficient equations together constitute the proposed AM-BML, which can well predict the stress distribution around a cased borehole in the formation with anisotropic in-situ stresses. Compared with the traditional analytical methods, the proposed AM-BML is more convenient for practical applications because it is difficult and complex to determine the undetermined coefficient in the stress field equations according to the traditional analytical methods. Finally, the proposed AM-BML is validated through the comparisons with numerical simulation experiments; and it is also used to investigate the influencing factors on the stress field of a cased borehole system, which gives some useful results. This work is helpful for the study of borehole stability and the other study related to the petroleum engineering.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424603884","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, an analytical method based on machine learning (AM-BML) is proposed to predict the stress distribution around a cased borehole in the formation with anisotropic in-situ stresses. Firstly, the stress field equations with undetermined coefficients are derived using the elasticity theory to formulate the stress field near the cased borehole. Secondly, the regression functions of a machine learning algorithm, least squares support vector machine (LS-SVM), are constructed according to the derived stress field equations. Thirdly, the undetermined coefficient equations are developed to determine the undetermined coefficients in the derived stress field equations according to the constructed LS-SVM regression functions and the derived stress field equations. The derived stress field equations and the developed undetermined coefficient equations together constitute the proposed AM-BML, which can well predict the stress distribution around a cased borehole in the formation with anisotropic in-situ stresses. Compared with the traditional analytical methods, the proposed AM-BML is more convenient for practical applications because it is difficult and complex to determine the undetermined coefficient in the stress field equations according to the traditional analytical methods. Finally, the proposed AM-BML is validated through the comparisons with numerical simulation experiments; and it is also used to investigate the influencing factors on the stress field of a cased borehole system, which gives some useful results. This work is helpful for the study of borehole stability and the other study related to the petroleum engineering.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.