{"title":"Standards for reporting optical biosensor experiments (STROBE): Improving standards in the reporting of optical biosensor-based data in the literature","authors":"Paul E. Belcher , Anna Moberg , Michael B. Murphy","doi":"10.1016/j.slasd.2024.100192","DOIUrl":null,"url":null,"abstract":"<div><div>The number of peer-reviewed publications that feature biosensor data increases every year. A search of PubMed using common technique terminology, including bio-layer interferometry (BLI), surface plasmon resonance (SPR) and grating-coupled interferometry (GCI) generated more than 2500 scientific papers from 2022. Compared to 2009, when David Myszka and Rebecca Rich presented their most recent review of biosensor literature (Rich and Myszka, 2011), this number has nearly doubled. With this increasing number of publications comes an increasing need for standardization of the way biosensor data is reported in journals to allow for replication of the experiments that were performed. Biosensor data is often poorly described in papers which makes it difficult, if not impossible, to replicate the experiment. Critical information typically missing includes sample preparation, method settings, and data evaluation details. We have also found published work in which the authors have failed to report the type of sensor that was used, or which biosensor instrumentation was used. To come to terms with this growing problem, we propose a standardization of the way biosensor data is reported in scientific journals. We call this standard STROBE, standards for reporting optical biosensor experiments.</div></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"29 8","pages":"Article 100192"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555224000546","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The number of peer-reviewed publications that feature biosensor data increases every year. A search of PubMed using common technique terminology, including bio-layer interferometry (BLI), surface plasmon resonance (SPR) and grating-coupled interferometry (GCI) generated more than 2500 scientific papers from 2022. Compared to 2009, when David Myszka and Rebecca Rich presented their most recent review of biosensor literature (Rich and Myszka, 2011), this number has nearly doubled. With this increasing number of publications comes an increasing need for standardization of the way biosensor data is reported in journals to allow for replication of the experiments that were performed. Biosensor data is often poorly described in papers which makes it difficult, if not impossible, to replicate the experiment. Critical information typically missing includes sample preparation, method settings, and data evaluation details. We have also found published work in which the authors have failed to report the type of sensor that was used, or which biosensor instrumentation was used. To come to terms with this growing problem, we propose a standardization of the way biosensor data is reported in scientific journals. We call this standard STROBE, standards for reporting optical biosensor experiments.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).