Understanding and modeling human-AI interaction of artificial intelligence tool in radiation oncology clinic using deep neural network: a feasibility study using three year prospective data.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Dongrong Yang, Cameron Murr, Xinyi Li, Sua Yoo, Rachel Blitzblau, Susan McDuff, Sarah Stephens, Q Jackie Wu, Qiuwen Wu, Yang Sheng
{"title":"Understanding and modeling human-AI interaction of artificial intelligence tool in radiation oncology clinic using deep neural network: a feasibility study using three year prospective data.","authors":"Dongrong Yang, Cameron Murr, Xinyi Li, Sua Yoo, Rachel Blitzblau, Susan McDuff, Sarah Stephens, Q Jackie Wu, Qiuwen Wu, Yang Sheng","doi":"10.1088/1361-6560/ad8e29","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Artificial intelligence (AI) based treatment planning tools are being implemented in clinic. However, human interactions with such AI tools are rarely analyzed. This study aims to comprehend human planner's interaction with the AI planning tool and incorporate the analysis to improve the existing AI tool.<i>Approach.</i>An in-house AI tool for whole breast radiation therapy planning was deployed in our institution since 2019, among which 522 patients were included in this study. The AI tool automatically generates fluence maps of the tangential beams to create an<i>AI plan</i>. Human planner makes fluence edits deemed necessary and after attending physician approval for treatment, it is recorded as<i>final plan</i>. Manual modification value maps were collected, which is the difference between the<i>AI-plan</i>and the<i>final plan</i>. Subsequently, a human-AI interaction (HAI) model using full scale connected U-Net was trained to learn such interactions and perform plan enhancements. The trained HAI model automatically modifies the<i>AI plan</i>to generate AI-modified plans (<i>AI-m plan</i>), simulating human editing. Its performance was evaluated against original<i>AI-plan</i>and<i>final plan. Main results. AI-m plan</i>showed statistically significant improvement in hotspot control over the<i>AI plan</i>, with an average of 25.2cc volume reduction in breast V105% (<i>p</i>= 0.011) and 0.805% decrease in Dmax (<i>p</i>< .001). It also maintained the same planning target volume (PTV) coverage as the<i>final plan</i>, demonstrating the model has captured the clinic focus of improving PTV hot spots without degrading coverage.<i>Significance.</i>The proposed HAI model has demonstrated capability of further enhancing the<i>AI plan</i>via modeling human-AI tool interactions. This study shows analysis of human interaction with the AI planning tool is a significant step to improve the AI tool.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad8e29","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Artificial intelligence (AI) based treatment planning tools are being implemented in clinic. However, human interactions with such AI tools are rarely analyzed. This study aims to comprehend human planner's interaction with the AI planning tool and incorporate the analysis to improve the existing AI tool.Approach.An in-house AI tool for whole breast radiation therapy planning was deployed in our institution since 2019, among which 522 patients were included in this study. The AI tool automatically generates fluence maps of the tangential beams to create anAI plan. Human planner makes fluence edits deemed necessary and after attending physician approval for treatment, it is recorded asfinal plan. Manual modification value maps were collected, which is the difference between theAI-planand thefinal plan. Subsequently, a human-AI interaction (HAI) model using full scale connected U-Net was trained to learn such interactions and perform plan enhancements. The trained HAI model automatically modifies theAI planto generate AI-modified plans (AI-m plan), simulating human editing. Its performance was evaluated against originalAI-planandfinal plan. Main results. AI-m planshowed statistically significant improvement in hotspot control over theAI plan, with an average of 25.2cc volume reduction in breast V105% (p= 0.011) and 0.805% decrease in Dmax (p< .001). It also maintained the same planning target volume (PTV) coverage as thefinal plan, demonstrating the model has captured the clinic focus of improving PTV hot spots without degrading coverage.Significance.The proposed HAI model has demonstrated capability of further enhancing theAI planvia modeling human-AI tool interactions. This study shows analysis of human interaction with the AI planning tool is a significant step to improve the AI tool.

利用深度神经网络理解和模拟放射肿瘤临床中人工智能工具的人机交互:一项利用三年前瞻性数据进行的可行性研究。
背景和目的: 基于人工智能(AI)的治疗规划工具正在临床中应用。然而,人类与此类人工智能工具之间的互动却很少得到分析。本研究旨在了解人类计划者与人工智能计划工具的互动,并结合分析结果改进现有的人工智能工具。 材料与方法: 自2019年起,本机构部署了用于全乳腺放射治疗计划的内部人工智能工具,本研究纳入了其中的522名患者。人工智能工具自动生成切向射束的通量图,以创建人工智能计划。人工计划人员进行必要的通量编辑,并在主治医生批准治疗后将其记录为最终计划。收集手动修改值(MMV)图,即人工智能计划与最终计划之间的差值。随后,使用全面连接的 U-Net 对人机交互(HAI)模型进行了训练,以学习此类交互并执行计划改进。经过训练的 HAI 模型会自动修改人工智能计划,生成人工智能修改计划(AI-m 计划),模拟人类编辑。其性能对照原始人工智能计划和最终计划进行评估。结果:人工智能-m 计划与人工智能计划相比,在热点控制方面有显著的统计学改善,乳房 V105% 的体积平均减少了 25.2cc (p=0.011),Dmax 减少了 0.805%(p=0.011)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信