Xiaoman Shao, Rui Yokomori, Jolynn Zu Lin Ong, Haoqing Shen, Dennis Kappei, Leilei Chen, Allen Eng Juh Yeoh, Shi Hao Tan, Takaomi Sanda
{"title":"Transcriptional regulatory program controlled by MYB in T-cell acute lymphoblastic leukemia","authors":"Xiaoman Shao, Rui Yokomori, Jolynn Zu Lin Ong, Haoqing Shen, Dennis Kappei, Leilei Chen, Allen Eng Juh Yeoh, Shi Hao Tan, Takaomi Sanda","doi":"10.1038/s41375-024-02455-9","DOIUrl":null,"url":null,"abstract":"The transcription factor MYB is frequently upregulated in T-cell acute lymphoblastic leukemia (T-ALL), a hematological malignancy originating from T-cell precursors. Here, we demonstrate that MYB plays a crucial role by regulating genes essential for T-ALL pathogenesis. Integrative analysis reveals a long MYB isoform, ENST00000367814.8, which is dominantly expressed and confers a proliferative advantage in T-ALL cells. Rapid depletion of MYB via dTAG-mediated protein degradation affects a large number of genes, which can be classified into early response or late response genes based on their kinetics. Early response genes include many genes involved in hematopoiesis, such as TAL1, RUNX1, GATA3, IKZF2, and CXCR4. Their expression can be recovered at later time-points, suggesting the presence of a negative feedback loop mechanism. In contrast, late response genes, which are continuously downregulated after MYB depletion, includes many genes involved in cell proliferation as well as TAL1 targets, thereby affecting the cellular phenotype.","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":"38 12","pages":"2573-2584"},"PeriodicalIF":12.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41375-024-02455-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41375-024-02455-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The transcription factor MYB is frequently upregulated in T-cell acute lymphoblastic leukemia (T-ALL), a hematological malignancy originating from T-cell precursors. Here, we demonstrate that MYB plays a crucial role by regulating genes essential for T-ALL pathogenesis. Integrative analysis reveals a long MYB isoform, ENST00000367814.8, which is dominantly expressed and confers a proliferative advantage in T-ALL cells. Rapid depletion of MYB via dTAG-mediated protein degradation affects a large number of genes, which can be classified into early response or late response genes based on their kinetics. Early response genes include many genes involved in hematopoiesis, such as TAL1, RUNX1, GATA3, IKZF2, and CXCR4. Their expression can be recovered at later time-points, suggesting the presence of a negative feedback loop mechanism. In contrast, late response genes, which are continuously downregulated after MYB depletion, includes many genes involved in cell proliferation as well as TAL1 targets, thereby affecting the cellular phenotype.
期刊介绍:
Title: Leukemia
Journal Overview:
Publishes high-quality, peer-reviewed research
Covers all aspects of research and treatment of leukemia and allied diseases
Includes studies of normal hemopoiesis due to comparative relevance
Topics of Interest:
Oncogenes
Growth factors
Stem cells
Leukemia genomics
Cell cycle
Signal transduction
Molecular targets for therapy
And more
Content Types:
Original research articles
Reviews
Letters
Correspondence
Comments elaborating on significant advances and covering topical issues