Soon Yan Tan , Chai Nien Foo , Foong Leng Ng , Chee Hong Tan , Yang Mooi Lim
{"title":"Gene Expression Profiling of Maslinic Acid-treated MCF-7 Breast Cancer Cells Using Nanostring nCounter Pancancer Pathway Panel","authors":"Soon Yan Tan , Chai Nien Foo , Foong Leng Ng , Chee Hong Tan , Yang Mooi Lim","doi":"10.1016/j.gene.2024.149043","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer remains a significant global health concern, impacting millions of women every year<strong>.</strong> Maslinic acid (MA), a pentacyclic triterpene has been found to exert promising anticancer effect in various cancers, including breast cancer, yet the underlying mechanisms remain unclear. This study aims to elucidate the anticancer properties of MA via gene expression profiles in breast cancer cells. Cytotoxicity assay results revealed that MCF-7 exerts the highest sensitivity after 72 h of MA treatment followed by T-47D and MDA-MB-231. MCF-7 were then selected for in-depth analysis using the Nanostring nCounter Pancancer Pathway Panel to analyze the differential expression of genes (DEGs). Across three time points (24, 48, and 72 h), 20 significant DEGs were identified, of which 5 were upregulated and 15 were downregulated. In silico analysis indicated that these DEGs were involved in Pathway of Cancer, Focal Adhesion-PI3K-mTOR Signaling Pathway, PI3K-Akt, and Ras Signaling Pathway. The regulation of these DEGs contributes to several cellular activities such as apoptosis, inhibition of cell proliferation, cell cycle and survival, reduction of glycolysis, angiogenesis, and DNA repair. Additionally, the unfolded protein response emerged as a noteworthy biological process in this study. This study unravels the molecular mechanisms underpinning the therapeutic potential of MA against breast cancer.</div></div>","PeriodicalId":12499,"journal":{"name":"Gene","volume":"935 ","pages":"Article 149043"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378111924009247","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer remains a significant global health concern, impacting millions of women every year. Maslinic acid (MA), a pentacyclic triterpene has been found to exert promising anticancer effect in various cancers, including breast cancer, yet the underlying mechanisms remain unclear. This study aims to elucidate the anticancer properties of MA via gene expression profiles in breast cancer cells. Cytotoxicity assay results revealed that MCF-7 exerts the highest sensitivity after 72 h of MA treatment followed by T-47D and MDA-MB-231. MCF-7 were then selected for in-depth analysis using the Nanostring nCounter Pancancer Pathway Panel to analyze the differential expression of genes (DEGs). Across three time points (24, 48, and 72 h), 20 significant DEGs were identified, of which 5 were upregulated and 15 were downregulated. In silico analysis indicated that these DEGs were involved in Pathway of Cancer, Focal Adhesion-PI3K-mTOR Signaling Pathway, PI3K-Akt, and Ras Signaling Pathway. The regulation of these DEGs contributes to several cellular activities such as apoptosis, inhibition of cell proliferation, cell cycle and survival, reduction of glycolysis, angiogenesis, and DNA repair. Additionally, the unfolded protein response emerged as a noteworthy biological process in this study. This study unravels the molecular mechanisms underpinning the therapeutic potential of MA against breast cancer.
期刊介绍:
Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.