Francisco Exposito, Miriam Redrado, Diego Serrano, Silvia Calabuig-Fariñas, Aida Bao-Caamano, Sandra Gallach, Eloisa Jantus-Lewintre, Angel Diaz-Lagares, Aitor Rodriguez-Casanova, Juan Sandoval, Edurne San Jose-Eneriz, Javier Garcia, Esther Redin, Yaiza Senent, Sergio Leon, Ruben Pio, Rafael Lopez, Julen Oyarzabal, Antonio Pineda-Lucena, Xabier Agirre, Luis M Montuenga, Felipe Prosper, Alfonso Calvo
{"title":"G9a/DNMT1 co-targeting inhibits non-small cell lung cancer growth and reprograms tumor cells to respond to cancer-drugs through SCARA5 and AOX1.","authors":"Francisco Exposito, Miriam Redrado, Diego Serrano, Silvia Calabuig-Fariñas, Aida Bao-Caamano, Sandra Gallach, Eloisa Jantus-Lewintre, Angel Diaz-Lagares, Aitor Rodriguez-Casanova, Juan Sandoval, Edurne San Jose-Eneriz, Javier Garcia, Esther Redin, Yaiza Senent, Sergio Leon, Ruben Pio, Rafael Lopez, Julen Oyarzabal, Antonio Pineda-Lucena, Xabier Agirre, Luis M Montuenga, Felipe Prosper, Alfonso Calvo","doi":"10.1038/s41419-024-07156-w","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of non-small cell lung cancer (NSCLC) patients has significantly improved with recent therapeutic strategies; however, many patients still do not benefit from them. As a result, new treatment approaches are urgently needed. In this study, we evaluated the antitumor efficacy of co-targeting G9a and DNMT1 enzymes and its potential as a cancer drug sensitizer. We observed co-expression and overexpression of G9a and DNMT1 in NSCLC, which were associated with poor prognosis. Co-targeting G9a/DNMT1 with the drug CM-272 reduced proliferation and induced cell death in a panel of human and murine NSCLC cell lines. Additionally, the transcriptomes of these cells were reprogrammed to become highly responsive to chemotherapy (cisplatin), targeted therapy (trametinib), and epigenetic therapy (vorinostat). In vivo, CM-272 reduced tumor volume in human and murine cell-derived cancer models, and this effect was synergistically enhanced by cisplatin. The expression of SCARA5 and AOX1 was induced by CM-272, and both proteins were found to be essential for the antiproliferative response, as gene silencing decreased cytotoxicity. Furthermore, the expression of SCARA5 and AOX1 was positively correlated with each other and inversely correlated with G9a and DNMT1 expression in NSCLC patients. SCARA5 and AOX1 DNA promoters were hypermethylated in NSCLC, and SCARA5 methylation was identified as an epigenetic biomarker in tumors and liquid biopsies from NSCLC patients. Thus, we demonstrate that co-targeting G9a/DNMT1 is a promising strategy to enhance the efficacy of cancer drugs, and SCARA5 methylation could serve as a non-invasive biomarker to monitor tumor progression.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07156-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The treatment of non-small cell lung cancer (NSCLC) patients has significantly improved with recent therapeutic strategies; however, many patients still do not benefit from them. As a result, new treatment approaches are urgently needed. In this study, we evaluated the antitumor efficacy of co-targeting G9a and DNMT1 enzymes and its potential as a cancer drug sensitizer. We observed co-expression and overexpression of G9a and DNMT1 in NSCLC, which were associated with poor prognosis. Co-targeting G9a/DNMT1 with the drug CM-272 reduced proliferation and induced cell death in a panel of human and murine NSCLC cell lines. Additionally, the transcriptomes of these cells were reprogrammed to become highly responsive to chemotherapy (cisplatin), targeted therapy (trametinib), and epigenetic therapy (vorinostat). In vivo, CM-272 reduced tumor volume in human and murine cell-derived cancer models, and this effect was synergistically enhanced by cisplatin. The expression of SCARA5 and AOX1 was induced by CM-272, and both proteins were found to be essential for the antiproliferative response, as gene silencing decreased cytotoxicity. Furthermore, the expression of SCARA5 and AOX1 was positively correlated with each other and inversely correlated with G9a and DNMT1 expression in NSCLC patients. SCARA5 and AOX1 DNA promoters were hypermethylated in NSCLC, and SCARA5 methylation was identified as an epigenetic biomarker in tumors and liquid biopsies from NSCLC patients. Thus, we demonstrate that co-targeting G9a/DNMT1 is a promising strategy to enhance the efficacy of cancer drugs, and SCARA5 methylation could serve as a non-invasive biomarker to monitor tumor progression.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism