Mary Jo Pugh, Heidi Munger Clary, Madeleine Myers, Eamonn Kennedy, Megan Amuan, Alicia A Swan, Sidney Hinds, W Curt LaFrance, Hamada Altalib, Alan Towne, Amy Henion, Abigail White, Christine Baca, Chen-Pin Wang
{"title":"Distinct comorbidity phenotypes among post-9/11 Veterans with epilepsy are linked to diverging outcomes and mortality risks.","authors":"Mary Jo Pugh, Heidi Munger Clary, Madeleine Myers, Eamonn Kennedy, Megan Amuan, Alicia A Swan, Sidney Hinds, W Curt LaFrance, Hamada Altalib, Alan Towne, Amy Henion, Abigail White, Christine Baca, Chen-Pin Wang","doi":"10.1111/epi.18170","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate phenotypes of comorbidity before and after an epilepsy diagnosis in a national cohort of post-9/11 Service Members and Veterans and explore phenotypic associations with mortality.</p><p><strong>Methods: </strong>Among a longitudinal cohort of Service Members and Veterans receiving care in the Veterans Health Administration (VHA) from 2002 to 2018, annual diagnoses for 26 conditions associated with epilepsy were collected over 5 years, ranging from 2 years prior to 2 years after the year of first epilepsy diagnosis. Latent class analysis (LCA) was used to identify probabilistic comorbidity phenotypes with distinct health trajectories. Descriptive statistics were used to describe the characteristics of each phenotype. Fine and Gray cause-specific survival models were used to measure mortality outcomes for each phenotype up to 2021.</p><p><strong>Results: </strong>Six distinct phenotypes were identified: (1) relatively healthy, (2) post-traumatic stress disorder, (3) anxiety and depression, (4) chronic disease, (5) bipolar/substance use disorder, and (6) polytrauma. Accidents were the most common cause of death overall, followed by suicide/mental health and cancer, respectively. Each phenotype exhibited unique associations with mortality and cause of death, highlighting the differential impact of comorbidity patterns on patient outcomes.</p><p><strong>Significance: </strong>By delineating clinically meaningful epilepsy comorbidity phenotypes, this study offers a framework for clinicians to tailor interventions. Moreover, these data support systems of care that facilitate treatment of epilepsy and comorbidities within an interdisciplinary health team that allows continuity of care. Targeting treatment toward patients with epilepsy who present with specific heightened risks could help mitigate adverse outcomes and enhance overall patient care.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/epi.18170","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To investigate phenotypes of comorbidity before and after an epilepsy diagnosis in a national cohort of post-9/11 Service Members and Veterans and explore phenotypic associations with mortality.
Methods: Among a longitudinal cohort of Service Members and Veterans receiving care in the Veterans Health Administration (VHA) from 2002 to 2018, annual diagnoses for 26 conditions associated with epilepsy were collected over 5 years, ranging from 2 years prior to 2 years after the year of first epilepsy diagnosis. Latent class analysis (LCA) was used to identify probabilistic comorbidity phenotypes with distinct health trajectories. Descriptive statistics were used to describe the characteristics of each phenotype. Fine and Gray cause-specific survival models were used to measure mortality outcomes for each phenotype up to 2021.
Results: Six distinct phenotypes were identified: (1) relatively healthy, (2) post-traumatic stress disorder, (3) anxiety and depression, (4) chronic disease, (5) bipolar/substance use disorder, and (6) polytrauma. Accidents were the most common cause of death overall, followed by suicide/mental health and cancer, respectively. Each phenotype exhibited unique associations with mortality and cause of death, highlighting the differential impact of comorbidity patterns on patient outcomes.
Significance: By delineating clinically meaningful epilepsy comorbidity phenotypes, this study offers a framework for clinicians to tailor interventions. Moreover, these data support systems of care that facilitate treatment of epilepsy and comorbidities within an interdisciplinary health team that allows continuity of care. Targeting treatment toward patients with epilepsy who present with specific heightened risks could help mitigate adverse outcomes and enhance overall patient care.
期刊介绍:
Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.