NSSC: a neuro-symbolic AI system for enhancing accuracy of named entity recognition and linking from oncologic clinical notes.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Álvaro García-Barragán, Ahmad Sakor, Maria-Esther Vidal, Ernestina Menasalvas, Juan Cristobal Sanchez Gonzalez, Mariano Provencio, Víctor Robles
{"title":"NSSC: a neuro-symbolic AI system for enhancing accuracy of named entity recognition and linking from oncologic clinical notes.","authors":"Álvaro García-Barragán, Ahmad Sakor, Maria-Esther Vidal, Ernestina Menasalvas, Juan Cristobal Sanchez Gonzalez, Mariano Provencio, Víctor Robles","doi":"10.1007/s11517-024-03227-4","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate recognition and linking of oncologic entities in clinical notes is essential for extracting insights across cancer research, patient care, clinical decision-making, and treatment optimization. We present the Neuro-Symbolic System for Cancer (NSSC), a hybrid AI framework that integrates neurosymbolic methods with named entity recognition (NER) and entity linking (EL) to transform unstructured clinical notes into structured terms using medical vocabularies, with the Unified Medical Language System (UMLS) as a case study. NSSC was evaluated on a dataset of clinical notes from breast cancer patients, demonstrating significant improvements in the accuracy of both entity recognition and linking compared to state-of-the-art models. Specifically, NSSC achieved a 33% improvement over BioFalcon and a 58% improvement over scispaCy. By combining large language models (LLMs) with symbolic reasoning, NSSC improves the recognition and interoperability of oncologic entities, enabling seamless integration with existing biomedical knowledge. This approach marks a significant advancement in extracting meaningful information from clinical narratives, offering promising applications in cancer research and personalized patient care.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03227-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate recognition and linking of oncologic entities in clinical notes is essential for extracting insights across cancer research, patient care, clinical decision-making, and treatment optimization. We present the Neuro-Symbolic System for Cancer (NSSC), a hybrid AI framework that integrates neurosymbolic methods with named entity recognition (NER) and entity linking (EL) to transform unstructured clinical notes into structured terms using medical vocabularies, with the Unified Medical Language System (UMLS) as a case study. NSSC was evaluated on a dataset of clinical notes from breast cancer patients, demonstrating significant improvements in the accuracy of both entity recognition and linking compared to state-of-the-art models. Specifically, NSSC achieved a 33% improvement over BioFalcon and a 58% improvement over scispaCy. By combining large language models (LLMs) with symbolic reasoning, NSSC improves the recognition and interoperability of oncologic entities, enabling seamless integration with existing biomedical knowledge. This approach marks a significant advancement in extracting meaningful information from clinical narratives, offering promising applications in cancer research and personalized patient care.

NSSC:用于提高肿瘤临床笔记中命名实体识别和链接准确性的神经符号人工智能系统。
准确识别和链接临床笔记中的肿瘤实体,对于在癌症研究、患者护理、临床决策和治疗优化中提取洞察力至关重要。我们介绍了癌症神经符号系统(NSSC),这是一种混合人工智能框架,它将神经符号方法与命名实体识别(NER)和实体链接(EL)相结合,利用医学词汇表将非结构化临床笔记转化为结构化术语,并以统一医学语言系统(UMLS)为案例进行了研究。NSSC 在乳腺癌患者的临床笔记数据集上进行了评估,结果表明,与最先进的模型相比,NSSC 的实体识别和链接准确率都有显著提高。具体来说,NSSC 比 BioFalcon 提高了 33%,比 scispaCy 提高了 58%。通过将大型语言模型(LLM)与符号推理相结合,NSSC 提高了肿瘤实体的识别和互操作性,实现了与现有生物医学知识的无缝整合。这种方法标志着在从临床叙述中提取有意义信息方面取得了重大进展,为癌症研究和个性化患者护理提供了广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信