Alyssa M Moore, Andrew Bowman, Syeda Nazifa Wali, Miranda R Weigand, David Wagner, Junhai Yang, Julia Laskin
{"title":"Quantitative Analysis of Drugs in a Mimetic Tissue Model Using Nano-DESI on a Triple Quadrupole Mass Spectrometer.","authors":"Alyssa M Moore, Andrew Bowman, Syeda Nazifa Wali, Miranda R Weigand, David Wagner, Junhai Yang, Julia Laskin","doi":"10.1021/jasms.4c00345","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry is a powerful analytical technique used at every stage of the pharmaceutical research process. A specialized branch of this method, mass spectrometry imaging (MSI), has emerged as an important tool for determining the spatial distribution of drugs in biological samples. Despite the importance of MSI, its quantitative capabilities are still limited due to the complexity of biological samples and the lack of separation prior to analysis. This makes the simultaneous quantification and visualization of analytes challenging. Several techniques have been developed to address this challenge and enable quantitative MSI. One such approach is the mimetic tissue model, which involves the incorporation of an analyte of interest into tissue homogenates at several concentrations. A calibration curve that accounts for signal suppression by the complex biological matrix is then created by measuring the signal of the analyte in the series of tissue homogenates. Herein, we use the mimetic tissue model on a triple quadrupole mass spectrometer (QqQ) in multiple reaction monitoring mode to demonstrate the quantitative abilities of nanospray desorption electrospray ionization (nano-DESI) and compare these results with those obtained using atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI). For the tested compounds, our findings indicate that nano-DESI achieves lower standard deviations than AP-MALDI, resulting in superior limits of detection for the studied analytes. Additionally, we discuss the limitations of the mimetic tissue model in the quantification of certain analytes and the challenges involved with the implementation of the model.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00345","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Mass spectrometry is a powerful analytical technique used at every stage of the pharmaceutical research process. A specialized branch of this method, mass spectrometry imaging (MSI), has emerged as an important tool for determining the spatial distribution of drugs in biological samples. Despite the importance of MSI, its quantitative capabilities are still limited due to the complexity of biological samples and the lack of separation prior to analysis. This makes the simultaneous quantification and visualization of analytes challenging. Several techniques have been developed to address this challenge and enable quantitative MSI. One such approach is the mimetic tissue model, which involves the incorporation of an analyte of interest into tissue homogenates at several concentrations. A calibration curve that accounts for signal suppression by the complex biological matrix is then created by measuring the signal of the analyte in the series of tissue homogenates. Herein, we use the mimetic tissue model on a triple quadrupole mass spectrometer (QqQ) in multiple reaction monitoring mode to demonstrate the quantitative abilities of nanospray desorption electrospray ionization (nano-DESI) and compare these results with those obtained using atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI). For the tested compounds, our findings indicate that nano-DESI achieves lower standard deviations than AP-MALDI, resulting in superior limits of detection for the studied analytes. Additionally, we discuss the limitations of the mimetic tissue model in the quantification of certain analytes and the challenges involved with the implementation of the model.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives