Effect of hydrostatic pressure and temperature on theCu2⁢Oelectronic band structure

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Miłosz Rybak, Filip Dybała, Tomasz Woźniak, Jan Kopaczek, Jakub Ziembicki, Michał Wiśniewski, Krzysztof Gawarecki, Pawel Scharoch, Robert Kudrawiec
{"title":"Effect of hydrostatic pressure and temperature on theCu2⁢Oelectronic band structure","authors":"Miłosz Rybak, Filip Dybała, Tomasz Woźniak, Jan Kopaczek, Jakub Ziembicki, Michał Wiśniewski, Krzysztof Gawarecki, Pawel Scharoch, Robert Kudrawiec","doi":"10.1103/physrevb.110.205201","DOIUrl":null,"url":null,"abstract":"We present extensive experimental and theoretical research aimed at thoroughly examining changes in the electronic structure of <mjx-container ctxtmenu_counter=\"17\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 (2 0 1) 4 3)\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper C u 2 normal upper O\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c style=\"padding-top: 0.669em;\">u</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c>O</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> under the influence of external factors. Hydrostatic pressure and temperature dependencies of optical properties were investigated experimentally using photoreflectance (PR), determining the pressure coefficients of as many as four direct optical transitions at the <mjx-container ctxtmenu_counter=\"18\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Gamma\" data-semantic-type=\"identifier\"><mjx-c>Γ</mjx-c></mjx-mi></mjx-math></mjx-container> point. Using state-of-the-art theoretical methods for band-structure prediction (including electron-phonon calculations), we obtained an excellent agreement of theory and experiment for both pressure and temperature properties. After theoretical analysis of excitonic properties, we claim that the change of the binding energy of the Wannier-Mott exciton under pressure turned out to be negligibly small up to applied pressure (17 kbar). We further describe the system in terms of the 12-band <mjx-container ctxtmenu_counter=\"19\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"multiplication\" data-semantic-speech=\"k dot p\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑘</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,·\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>·</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"3\"><mjx-c>𝑝</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> Hamiltonian, derived in the invariant expansion form, including the strain part. We find parameter values for the <mjx-container ctxtmenu_counter=\"20\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"multiplication\" data-semantic-speech=\"k dot p\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑘</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,·\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>·</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"3\"><mjx-c>𝑝</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> model based on our accurate band-structure calculations, including a set of absolute deformation potentials for band edges. As a result, we deliver a reliable and computationally efficient methodology for semiconductor device modeling.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205201","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We present extensive experimental and theoretical research aimed at thoroughly examining changes in the electronic structure of Cu2O under the influence of external factors. Hydrostatic pressure and temperature dependencies of optical properties were investigated experimentally using photoreflectance (PR), determining the pressure coefficients of as many as four direct optical transitions at the Γ point. Using state-of-the-art theoretical methods for band-structure prediction (including electron-phonon calculations), we obtained an excellent agreement of theory and experiment for both pressure and temperature properties. After theoretical analysis of excitonic properties, we claim that the change of the binding energy of the Wannier-Mott exciton under pressure turned out to be negligibly small up to applied pressure (17 kbar). We further describe the system in terms of the 12-band 𝑘·𝑝 Hamiltonian, derived in the invariant expansion form, including the strain part. We find parameter values for the 𝑘·𝑝 model based on our accurate band-structure calculations, including a set of absolute deformation potentials for band edges. As a result, we deliver a reliable and computationally efficient methodology for semiconductor device modeling.
静水压力和温度对氧化铜电子能带结构的影响
我们进行了大量的实验和理论研究,旨在彻底检查 Cu2O 电子结构在外部因素影响下的变化。我们利用光反射(PR)对光学特性的静水压力和温度依赖性进行了实验研究,确定了多达四种Γ点直接光学转变的压力系数。我们采用最先进的带状结构预测理论方法(包括电子-声子计算),在压力和温度特性方面都取得了理论与实验的完美一致。在对激子特性进行理论分析后,我们发现在压力(17 千巴)作用下,万尼-莫特激子结合能的变化非常小,可以忽略不计。我们进一步用 12 段𝑘-𝑝哈密顿来描述该系统,该哈密顿以不变展开形式导出,包括应变部分。我们根据精确的带状结构计算,包括带边的一组绝对变形势,找到了𝑘-𝑝模型的参数值。因此,我们为半导体器件建模提供了一种可靠且计算效率高的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信