Miłosz Rybak, Filip Dybała, Tomasz Woźniak, Jan Kopaczek, Jakub Ziembicki, Michał Wiśniewski, Krzysztof Gawarecki, Pawel Scharoch, Robert Kudrawiec
{"title":"Effect of hydrostatic pressure and temperature on theCu2Oelectronic band structure","authors":"Miłosz Rybak, Filip Dybała, Tomasz Woźniak, Jan Kopaczek, Jakub Ziembicki, Michał Wiśniewski, Krzysztof Gawarecki, Pawel Scharoch, Robert Kudrawiec","doi":"10.1103/physrevb.110.205201","DOIUrl":null,"url":null,"abstract":"We present extensive experimental and theoretical research aimed at thoroughly examining changes in the electronic structure of <mjx-container ctxtmenu_counter=\"17\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 (2 0 1) 4 3)\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper C u 2 normal upper O\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c style=\"padding-top: 0.669em;\">u</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c>O</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> under the influence of external factors. Hydrostatic pressure and temperature dependencies of optical properties were investigated experimentally using photoreflectance (PR), determining the pressure coefficients of as many as four direct optical transitions at the <mjx-container ctxtmenu_counter=\"18\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Gamma\" data-semantic-type=\"identifier\"><mjx-c>Γ</mjx-c></mjx-mi></mjx-math></mjx-container> point. Using state-of-the-art theoretical methods for band-structure prediction (including electron-phonon calculations), we obtained an excellent agreement of theory and experiment for both pressure and temperature properties. After theoretical analysis of excitonic properties, we claim that the change of the binding energy of the Wannier-Mott exciton under pressure turned out to be negligibly small up to applied pressure (17 kbar). We further describe the system in terms of the 12-band <mjx-container ctxtmenu_counter=\"19\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"multiplication\" data-semantic-speech=\"k dot p\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑘</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,·\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>·</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"3\"><mjx-c>𝑝</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> Hamiltonian, derived in the invariant expansion form, including the strain part. We find parameter values for the <mjx-container ctxtmenu_counter=\"20\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"multiplication\" data-semantic-speech=\"k dot p\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑘</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,·\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>·</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"3\"><mjx-c>𝑝</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> model based on our accurate band-structure calculations, including a set of absolute deformation potentials for band edges. As a result, we deliver a reliable and computationally efficient methodology for semiconductor device modeling.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205201","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We present extensive experimental and theoretical research aimed at thoroughly examining changes in the electronic structure of Cu2O under the influence of external factors. Hydrostatic pressure and temperature dependencies of optical properties were investigated experimentally using photoreflectance (PR), determining the pressure coefficients of as many as four direct optical transitions at the Γ point. Using state-of-the-art theoretical methods for band-structure prediction (including electron-phonon calculations), we obtained an excellent agreement of theory and experiment for both pressure and temperature properties. After theoretical analysis of excitonic properties, we claim that the change of the binding energy of the Wannier-Mott exciton under pressure turned out to be negligibly small up to applied pressure (17 kbar). We further describe the system in terms of the 12-band 𝑘·𝑝 Hamiltonian, derived in the invariant expansion form, including the strain part. We find parameter values for the 𝑘·𝑝 model based on our accurate band-structure calculations, including a set of absolute deformation potentials for band edges. As a result, we deliver a reliable and computationally efficient methodology for semiconductor device modeling.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter