Paolo Settembri, Federico Mazzola, Ivana Vobornik, Jun Fujii, Maximilian Kögler, Chia-Nung Kuo, Chin Shan Lue, Antonio Politano, Gianni Profeta
{"title":"Unveiling strain-responsive topological landscapes in theNiTe2Dirac semimetal","authors":"Paolo Settembri, Federico Mazzola, Ivana Vobornik, Jun Fujii, Maximilian Kögler, Chia-Nung Kuo, Chin Shan Lue, Antonio Politano, Gianni Profeta","doi":"10.1103/physrevb.110.l201401","DOIUrl":null,"url":null,"abstract":"We report strain induced modification of the topological surface band structure of layered transition metal dichalcogenide <mjx-container ctxtmenu_counter=\"20\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper T e 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">i</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">T</mjx-c><mjx-c style=\"padding-top: 0.673em;\">e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>, which hosts type-II Dirac points close to the Fermi level and topological surface states originating from band inversions along the <mjx-container ctxtmenu_counter=\"21\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"subtraction\" data-semantic-speech=\"normal upper Gamma minus upper A\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>Γ</mjx-c></mjx-mi><mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\">−</mjx-utext></mjx-mtext><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> direction of the Brillouin zone. By means of first-principles density functional theory calculations, we predict the evolution of the surface states, analyzing their dispersion and spin texture, eventually showing a relevant modulation of their filling as a function of the uniaxial in-plane strain conditions. Synchrotron-based angle-resolved photoemission experiments, using an experimental setup to induce strain in two-dimensional layered materials, demonstrate a clear variation of the spin-polarized topological surface band structure of <mjx-container ctxtmenu_counter=\"22\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper T e 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">i</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">T</mjx-c><mjx-c style=\"padding-top: 0.673em;\">e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>, in agreement with theoretical predictions. Our study suggests the possibility of tuning <mjx-container ctxtmenu_counter=\"23\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper T e 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">i</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">T</mjx-c><mjx-c style=\"padding-top: 0.673em;\">e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>'s topological surface states with external uniaxial strain, leading to further studies on diverse strain conditions and spintronic applications.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.l201401","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We report strain induced modification of the topological surface band structure of layered transition metal dichalcogenide NiTe2, which hosts type-II Dirac points close to the Fermi level and topological surface states originating from band inversions along the Γ−𝐴 direction of the Brillouin zone. By means of first-principles density functional theory calculations, we predict the evolution of the surface states, analyzing their dispersion and spin texture, eventually showing a relevant modulation of their filling as a function of the uniaxial in-plane strain conditions. Synchrotron-based angle-resolved photoemission experiments, using an experimental setup to induce strain in two-dimensional layered materials, demonstrate a clear variation of the spin-polarized topological surface band structure of NiTe2, in agreement with theoretical predictions. Our study suggests the possibility of tuning NiTe2's topological surface states with external uniaxial strain, leading to further studies on diverse strain conditions and spintronic applications.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter