A Theory of the NEPv Approach for Optimization on the Stiefel Manifold

IF 2.5 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Ren-Cang Li
{"title":"A Theory of the NEPv Approach for Optimization on the Stiefel Manifold","authors":"Ren-Cang Li","doi":"10.1007/s10208-024-09687-2","DOIUrl":null,"url":null,"abstract":"<p>The NEPv approach has been increasingly used lately for optimization on the Stiefel manifold arising from machine learning. General speaking, the approach first turns the first order optimality condition into a nonlinear eigenvalue problem with eigenvector dependency (NEPv) and then solve the nonlinear problem via some variations of the self-consistent-field (SCF) iteration. The difficulty, however, lies in designing a proper SCF iteration so that a maximizer is found at the end. Currently, each use of the approach is very much individualized, especially in its convergence analysis phase to show that the approach does work or otherwise. Related, the NPDo approach is recently proposed for the sum of coupled traces and it seeks to turn the first order optimality condition into a nonlinear polar decomposition with orthogonal factor dependency (NPDo). In this paper, two unifying frameworks are established, one for each approach. Each framework is built upon a basic assumption, under which globally convergence to a stationary point is guaranteed and during the SCF iterative process that leads to the stationary point, the objective function increases monotonically. Also the notion of atomic function for each approach is proposed, and the atomic functions include commonly used matrix traces of linear and quadratic forms as special ones. It is shown that the basic assumptions of the approaches are satisfied by their respective atomic functions and, more importantly, by convex compositions of their respective atomic functions. Together they provide a large collection of objectives for which either one of approaches or both are guaranteed to work, respectively.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"67 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09687-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The NEPv approach has been increasingly used lately for optimization on the Stiefel manifold arising from machine learning. General speaking, the approach first turns the first order optimality condition into a nonlinear eigenvalue problem with eigenvector dependency (NEPv) and then solve the nonlinear problem via some variations of the self-consistent-field (SCF) iteration. The difficulty, however, lies in designing a proper SCF iteration so that a maximizer is found at the end. Currently, each use of the approach is very much individualized, especially in its convergence analysis phase to show that the approach does work or otherwise. Related, the NPDo approach is recently proposed for the sum of coupled traces and it seeks to turn the first order optimality condition into a nonlinear polar decomposition with orthogonal factor dependency (NPDo). In this paper, two unifying frameworks are established, one for each approach. Each framework is built upon a basic assumption, under which globally convergence to a stationary point is guaranteed and during the SCF iterative process that leads to the stationary point, the objective function increases monotonically. Also the notion of atomic function for each approach is proposed, and the atomic functions include commonly used matrix traces of linear and quadratic forms as special ones. It is shown that the basic assumptions of the approaches are satisfied by their respective atomic functions and, more importantly, by convex compositions of their respective atomic functions. Together they provide a large collection of objectives for which either one of approaches or both are guaranteed to work, respectively.

Abstract Image

斯蒂费尔曼菲尔德上优化的 NEPv 方法理论
近来,NEPv 方法越来越多地用于机器学习所产生的 Stiefel 流形上的优化。一般来说,该方法首先将一阶最优条件转化为具有特征向量依赖性的非线性特征值问题(NEPv),然后通过自洽场(SCF)迭代的一些变化来解决非线性问题。然而,困难在于如何设计适当的 SCF 迭代,以便最终找到最大值。目前,该方法的每次使用都非常个性化,特别是在收敛分析阶段,以显示该方法是否有效。与此相关,最近针对耦合迹线总和提出了 NPDo 方法,该方法试图将一阶最优条件转化为具有正交因子依赖性的非线性极分解(NPDo)。本文建立了两种统一框架,每种方法各适用一个框架。每个框架都建立在一个基本假设之上,即保证全局收敛到静止点,并且在通向静止点的 SCF 迭代过程中,目标函数单调增长。此外,还为每种方法提出了原子函数的概念,原子函数包括常用的线性和二次形式的矩阵迹作为特殊的矩阵迹。结果表明,这些方法的基本假设都能通过各自的原子函数得到满足,更重要的是,能通过各自原子函数的凸合成得到满足。它们共同提供了大量目标,其中一种方法或两种方法都能保证分别适用于这些目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信