A finite element contour integral method for computing the scattering resonances of fluid-solid interaction problem

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yingxia Xi , Xia Ji
{"title":"A finite element contour integral method for computing the scattering resonances of fluid-solid interaction problem","authors":"Yingxia Xi ,&nbsp;Xia Ji","doi":"10.1016/j.jcp.2024.113539","DOIUrl":null,"url":null,"abstract":"<div><div>The paper considers the computation of scattering resonances of the fluid-solid interaction problem. Scattering resonances are the replacement of discrete spectral data for problems on non-compact domains which are very important in many areas of science and engineering. For the special disk case, we get the analytical solution which can be used as reference solutions. For the general case, we truncate the unbounded domain using the Dirichlet-to-Neumann (DtN) mapping. Standard linear Lagrange element is used to do the discretization which leads to nonlinear algebraic eigenvalue problems. We then solve the nonlinear algebraic eigenvalue problems by the parallel spectral indicator methods. Finally, numerical examples are presented.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113539"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007873","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the computation of scattering resonances of the fluid-solid interaction problem. Scattering resonances are the replacement of discrete spectral data for problems on non-compact domains which are very important in many areas of science and engineering. For the special disk case, we get the analytical solution which can be used as reference solutions. For the general case, we truncate the unbounded domain using the Dirichlet-to-Neumann (DtN) mapping. Standard linear Lagrange element is used to do the discretization which leads to nonlinear algebraic eigenvalue problems. We then solve the nonlinear algebraic eigenvalue problems by the parallel spectral indicator methods. Finally, numerical examples are presented.
计算流固耦合问题散射共振的有限元轮廓积分法
本文探讨了流固相互作用问题的散射共振计算。散射共振是非紧凑域问题离散谱数据的替代品,在科学和工程的许多领域都非常重要。对于特殊圆盘情况,我们得到了可用作参考解的解析解。对于一般情况,我们使用 Dirichlet 到 Neumann(DtN)映射截断无界域。使用标准线性拉格朗日元素进行离散化,从而产生非线性代数特征值问题。然后,我们用并行谱指标法求解非线性代数特征值问题。最后,我们给出了数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信