{"title":"Epidemics on critical random graphs with heavy-tailed degree distribution","authors":"David Clancy Jr.","doi":"10.1016/j.spa.2024.104510","DOIUrl":null,"url":null,"abstract":"<div><div>We study the susceptible–infected–recovered (SIR) epidemic on a random graph chosen uniformly over all graphs with certain critical, heavy-tailed degree distributions. We prove process level scaling limits for the number of individuals infected on day <span><math><mi>h</mi></math></span> on the largest connected components of the graph. The scaling limits contain non-negative jumps corresponding to some vertices of large degree. These weak convergence techniques allow us to describe the height profile of the <span><math><mi>α</mi></math></span>-stable continuum random graph (Goldschmidt et al., 2022; Conchon-Kerjan and Goldschmidt, 2023), extending results known in the Brownian case (Miermont and Sen, 2022). We also prove model-independent results that can be used on other critical random graph models.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104510"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002187","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the susceptible–infected–recovered (SIR) epidemic on a random graph chosen uniformly over all graphs with certain critical, heavy-tailed degree distributions. We prove process level scaling limits for the number of individuals infected on day on the largest connected components of the graph. The scaling limits contain non-negative jumps corresponding to some vertices of large degree. These weak convergence techniques allow us to describe the height profile of the -stable continuum random graph (Goldschmidt et al., 2022; Conchon-Kerjan and Goldschmidt, 2023), extending results known in the Brownian case (Miermont and Sen, 2022). We also prove model-independent results that can be used on other critical random graph models.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.