Intelligent fault prediction with wavelet-SVM fusion in coal mine

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chengyang Han , Guangui Zou , Hen-Geul Yeh , Fei Gong , Suzhen Shi , Hao Chen
{"title":"Intelligent fault prediction with wavelet-SVM fusion in coal mine","authors":"Chengyang Han ,&nbsp;Guangui Zou ,&nbsp;Hen-Geul Yeh ,&nbsp;Fei Gong ,&nbsp;Suzhen Shi ,&nbsp;Hao Chen","doi":"10.1016/j.cageo.2024.105744","DOIUrl":null,"url":null,"abstract":"<div><div>Fault prediction in coal mining is crucial for safety, and recent technological advancements are steering this field towards supervised intelligent interpretation, moving beyond traditional human-machine interaction. Currently, support vector machine (SVM) predictions often rely on seismic attribute data; however, the poor quality of some fault data characteristics hampers their predictive capability. To localize the fault based on original seismic data and improve SVM prediction we propose the W-SVM algorithm, which integrates wavelet transform and SVM. Through wavelet transform, we localize fault features in seismic data, which are then used for SVM prediction. Validation using real data confirms the feasibility of the W-SVM approach. The W-SVM model successfully identifies 34 known faults. Beyond achieving high prediction accuracy, the model exhibits improved stability and generalization. The difference among the evaluation metrics for training, validation, and testing is within 5%. Moreover, this study localizes the response of faults through wavelet transform, simplifies the dataset preparation process, improves computational efficiency, and increases overall applicability. This advancement further promotes the development of intelligent identification of faults in coal mines.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"194 ","pages":"Article 105744"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002279","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Fault prediction in coal mining is crucial for safety, and recent technological advancements are steering this field towards supervised intelligent interpretation, moving beyond traditional human-machine interaction. Currently, support vector machine (SVM) predictions often rely on seismic attribute data; however, the poor quality of some fault data characteristics hampers their predictive capability. To localize the fault based on original seismic data and improve SVM prediction we propose the W-SVM algorithm, which integrates wavelet transform and SVM. Through wavelet transform, we localize fault features in seismic data, which are then used for SVM prediction. Validation using real data confirms the feasibility of the W-SVM approach. The W-SVM model successfully identifies 34 known faults. Beyond achieving high prediction accuracy, the model exhibits improved stability and generalization. The difference among the evaluation metrics for training, validation, and testing is within 5%. Moreover, this study localizes the response of faults through wavelet transform, simplifies the dataset preparation process, improves computational efficiency, and increases overall applicability. This advancement further promotes the development of intelligent identification of faults in coal mines.
利用小波-SVM 融合技术进行煤矿智能故障预测
煤矿开采中的断层预测对安全至关重要,而最近的技术进步正在引导该领域向监督智能解释方向发展,超越了传统的人机交互。目前,支持向量机(SVM)预测通常依赖于地震属性数据,但一些断层数据特征的质量较差,影响了其预测能力。为了在原始地震数据的基础上定位断层并改进 SVM 预测,我们提出了小波变换与 SVM 相结合的 W-SVM 算法。通过小波变换,我们定位了地震数据中的断层特征,然后将其用于 SVM 预测。使用真实数据进行的验证证实了 W-SVM 方法的可行性。W-SVM 模型成功识别了 34 个已知断层。除了达到较高的预测精度,该模型还表现出更高的稳定性和泛化能力。训练、验证和测试的评估指标之间的差异均在 5%以内。此外,该研究通过小波变换对故障响应进行定位,简化了数据集准备过程,提高了计算效率,并增加了整体适用性。这一进步进一步推动了煤矿断层智能识别的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信