Nonlinear dynamic characteristics of smart FG-GPLRC sandwich varying thickness truncated conical shell with internal resonance for first three order modes
Shaowu Yang , Zhiquan Wang , Yuxin Hao , Wei Zhang , Yan Niu , Wensai Ma
{"title":"Nonlinear dynamic characteristics of smart FG-GPLRC sandwich varying thickness truncated conical shell with internal resonance for first three order modes","authors":"Shaowu Yang , Zhiquan Wang , Yuxin Hao , Wei Zhang , Yan Niu , Wensai Ma","doi":"10.1016/j.ast.2024.109672","DOIUrl":null,"url":null,"abstract":"<div><div>This paper examines the 1:1:1 internal resonant nonlinear dynamic characteristic of the simply supported varying thickness functionally graded graphene platelets reinforced composite (FG-GPLRC) smart truncated sandwich conical shell subject to the combined effects of transverse load and in-plane force. The truncated smart sandwich conical shell is composed of an FG-GPLRC varying thickness core and two magneto-electro-elastic face layers, whose material properties and constitutive relations are individually identified by the rule of mixture, improved Halpin-Tsai approach and generalized Hooke's law. Utilizing the first-order shear deformation theory (FSDT), von Karman's geometrical nonlinearity, Hamilton's principle and Galerkin technique, the 3DOF dimensionless nonlinear dynamic formulations for the truncated smart FG-GPLRC conical shell are established. The multiple-scale technique is applied to developing the averaged equations for the truncated smart FG-GPLRC conical shell under combined resonance. The frequency-response and force-response curves, Poincare maps, phase portraits, time history diagrams, bifurcation and maximum Lyapunov exponent diagrams can be portrayed by the nonlinear equation solver and Runge-Kutta approach. The effects of the damping and tuning parameters, transverse and in-plane forces on the 1:1:1 internal resonant nonlinear dynamic characteristic of truncated smart varying thickness FG-GPLRC sandwich conical shell are examined.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109672"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008010","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines the 1:1:1 internal resonant nonlinear dynamic characteristic of the simply supported varying thickness functionally graded graphene platelets reinforced composite (FG-GPLRC) smart truncated sandwich conical shell subject to the combined effects of transverse load and in-plane force. The truncated smart sandwich conical shell is composed of an FG-GPLRC varying thickness core and two magneto-electro-elastic face layers, whose material properties and constitutive relations are individually identified by the rule of mixture, improved Halpin-Tsai approach and generalized Hooke's law. Utilizing the first-order shear deformation theory (FSDT), von Karman's geometrical nonlinearity, Hamilton's principle and Galerkin technique, the 3DOF dimensionless nonlinear dynamic formulations for the truncated smart FG-GPLRC conical shell are established. The multiple-scale technique is applied to developing the averaged equations for the truncated smart FG-GPLRC conical shell under combined resonance. The frequency-response and force-response curves, Poincare maps, phase portraits, time history diagrams, bifurcation and maximum Lyapunov exponent diagrams can be portrayed by the nonlinear equation solver and Runge-Kutta approach. The effects of the damping and tuning parameters, transverse and in-plane forces on the 1:1:1 internal resonant nonlinear dynamic characteristic of truncated smart varying thickness FG-GPLRC sandwich conical shell are examined.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.