LitAI: Enhancing Multimodal Literature Understanding and Mining with Generative AI.

Gowtham Medisetti, Zacchaeus Compson, Heng Fan, Huaxiao Yang, Yunhe Feng
{"title":"<i>LitAI</i>: Enhancing Multimodal Literature Understanding and Mining with Generative AI.","authors":"Gowtham Medisetti, Zacchaeus Compson, Heng Fan, Huaxiao Yang, Yunhe Feng","doi":"10.1109/mipr62202.2024.00080","DOIUrl":null,"url":null,"abstract":"<p><p>Information processing and retrieval in literature are critical for advancing scientific research and knowledge discovery. The inherent multimodality and diverse literature formats, including text, tables, and figures, present significant challenges in literature information retrieval. This paper introduces <i>LitAI</i>, a novel approach that employs readily available generative AI tools to enhance multimodal information retrieval from literature documents. By integrating tools such as optical character recognition (OCR) with generative AI services, <i>LitAI</i> facilitates the retrieval of text, tables, and figures from PDF documents. We have developed specific prompts that leverage in-context learning and prompt engineering within Generative AI to achieve precise information extraction. Our empirical evaluations, conducted on datasets from the ecological and biological sciences, demonstrate the superiority of our approach over several established baselines including Tesseract-OCR and GPT-4. The implementation of <i>LitAI</i> is accessible at https://github.com/ResponsibleAILab/LitAI.</p>","PeriodicalId":520274,"journal":{"name":"Proceedings. IEEE Conference on Multimedia Information Processing and Retrieval","volume":"2024 ","pages":"471-476"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526646/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Conference on Multimedia Information Processing and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mipr62202.2024.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Information processing and retrieval in literature are critical for advancing scientific research and knowledge discovery. The inherent multimodality and diverse literature formats, including text, tables, and figures, present significant challenges in literature information retrieval. This paper introduces LitAI, a novel approach that employs readily available generative AI tools to enhance multimodal information retrieval from literature documents. By integrating tools such as optical character recognition (OCR) with generative AI services, LitAI facilitates the retrieval of text, tables, and figures from PDF documents. We have developed specific prompts that leverage in-context learning and prompt engineering within Generative AI to achieve precise information extraction. Our empirical evaluations, conducted on datasets from the ecological and biological sciences, demonstrate the superiority of our approach over several established baselines including Tesseract-OCR and GPT-4. The implementation of LitAI is accessible at https://github.com/ResponsibleAILab/LitAI.

LitAI:利用生成式人工智能加强多模态文学理解和挖掘。
文献信息处理和检索对于推动科学研究和知识发现至关重要。固有的多模态和多样化的文献格式(包括文本、表格和数字)给文献信息检索带来了巨大挑战。本文介绍的 LitAI 是一种新颖的方法,它利用现成的生成式人工智能工具来增强文献中的多模态信息检索。通过将光学字符识别(OCR)等工具与生成式人工智能服务相结合,LitAI 可帮助检索 PDF 文档中的文本、表格和数字。我们开发了特定的提示,利用生成式人工智能中的上下文学习和提示工程来实现精确的信息提取。我们在生态和生物科学数据集上进行的实证评估表明,我们的方法优于包括 Tesseract-OCR 和 GPT-4 在内的几种既定基准。LitAI 的实现可在 https://github.com/ResponsibleAILab/LitAI 上访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信