Human Satellite 3 DNA encodes megabase-scale transcription factor binding platforms.

J Matthew Franklin, Danilo Dubocanin, Cy Chittenden, Ashlie Barillas, Rosa Jooyoung Lee, Rajarshi P Ghosh, Jennifer L Gerton, Kun-Liang Guan, Nicolas Altemose
{"title":"Human Satellite 3 DNA encodes megabase-scale transcription factor binding platforms.","authors":"J Matthew Franklin, Danilo Dubocanin, Cy Chittenden, Ashlie Barillas, Rosa Jooyoung Lee, Rajarshi P Ghosh, Jennifer L Gerton, Kun-Liang Guan, Nicolas Altemose","doi":"10.1101/2024.10.22.616524","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic genomes frequently contain large arrays of tandem repeats, called satellite DNA. While some satellite DNAs participate in centromere function, others do not. For example, Human Satellite 3 (HSat3) forms the largest satellite DNA arrays in the human genome, but these multi-megabase regions were almost fully excluded from genome assemblies until recently, and their potential functions remain understudied and largely unknown. To address this, we performed a systematic screen for HSat3 binding proteins. Our work revealed that HSat3 contains millions of copies of transcription factor (TF) motifs bound by over a dozen TFs from various signaling pathways, including the growth-regulating transcription effector family TEAD1-4 from the Hippo pathway. Imaging experiments show that TEAD recruits the co-activator YAP to HSat3 regions in a cell-state specific manner. Using synthetic reporter assays, targeted repression of HSat3, inducible degradation of YAP, and super-resolution microscopy, we show that HSat3 arrays can localize YAP/TEAD inside the nucleolus, enhancing RNA Polymerase I activity. Beyond discovering a direct relationship between the Hippo pathway and ribosomal DNA regulation, this work demonstrates that satellite DNA can encode multiple transcription factor binding motifs, defining an important functional role for these enormous genomic elements.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.22.616524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Eukaryotic genomes frequently contain large arrays of tandem repeats, called satellite DNA. While some satellite DNAs participate in centromere function, others do not. For example, Human Satellite 3 (HSat3) forms the largest satellite DNA arrays in the human genome, but these multi-megabase regions were almost fully excluded from genome assemblies until recently, and their potential functions remain understudied and largely unknown. To address this, we performed a systematic screen for HSat3 binding proteins. Our work revealed that HSat3 contains millions of copies of transcription factor (TF) motifs bound by over a dozen TFs from various signaling pathways, including the growth-regulating transcription effector family TEAD1-4 from the Hippo pathway. Imaging experiments show that TEAD recruits the co-activator YAP to HSat3 regions in a cell-state specific manner. Using synthetic reporter assays, targeted repression of HSat3, inducible degradation of YAP, and super-resolution microscopy, we show that HSat3 arrays can localize YAP/TEAD inside the nucleolus, enhancing RNA Polymerase I activity. Beyond discovering a direct relationship between the Hippo pathway and ribosomal DNA regulation, this work demonstrates that satellite DNA can encode multiple transcription factor binding motifs, defining an important functional role for these enormous genomic elements.

人类卫星 3 DNA 编码兆碱基规模的转录因子结合平台。
真核生物基因组中经常存在大量串联重复序列,这些序列被称为卫星 DNA,它们是中心粒区域周围经常出现的组成型异染色质的基础。一些卫星 DNA 类型在中心粒生物学中的作用已得到证实,而其他丰富的卫星 DNA 功能却鲜为人知。例如,人类卫星 3(HSat3)约占人类基因组的 2%,可形成高达数十兆位元组的巨大阵列,但这些阵列在中心粒功能中并没有发挥已知的作用,直到最近才几乎完全被排除在基因组组装之外。因此,对这些巨大的基因组区域的研究相对较少,HSat3 的潜在功能作用在很大程度上仍然未知。为了解决这个问题,我们对新型 HSat3 结合因子进行了系统筛选。我们的研究发现,HSat3 阵列含有高密度的转录因子(TF)基序,这些基序与多种高度保守的信号通路相关因子结合。出乎意料的是,HSat3 中最富集的 TF 属于 Hippo 通路转录效应因子家族 TEAD。我们发现,TEAD以细胞状态特异的方式将共激活因子YAP招募到HSat3区域。利用 RNA 聚合酶-I 报告实验、HSat3 的靶向抑制、YAP 的诱导降解和超分辨率显微镜,我们发现 HSat3 阵列能将 YAP/TEAD 定位于核仁内,而 YAP 在核仁内调节 RNA 聚合酶-I 的活性。除了揭示 Hippo 通路与核糖体 DNA 调控之间的直接关系外,这项工作还证明卫星 DNA 可以编码多个转录因子结合基序,为这些巨大的基因组元件定义了新的角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信