Functional organization and natural scene responses across mouse visual cortical areas revealed with encoding manifolds.

Luciano Dyballa, Greg D Field, Michael P Stryker, Steven W Zucker
{"title":"Functional organization and natural scene responses across mouse visual cortical areas revealed with encoding manifolds.","authors":"Luciano Dyballa, Greg D Field, Michael P Stryker, Steven W Zucker","doi":"10.1101/2024.10.24.620089","DOIUrl":null,"url":null,"abstract":"<p><p>A challenge in sensory neuroscience is understanding how populations of neurons operate in concert to represent diverse stimuli. To meet this challenge, we have created \"encoding manifolds\" that reveal the overall responses of brain areas to diverse stimuli with the resolution of individual neurons and their response dynamics. Here we use encoding manifold to compare the population-level encoding of primary visual cortex (VISp) with five higher visual areas (VISam, VISal, VISpm, VISlm, and VISrl). We used data from the Allen Institute Visual Coding-Neuropixels dataset from the mouse. We show that the encoding manifold topology computed only from responses to grating stimuli is continuous, for V1 and for higher visual areas, with smooth coordinates spanning it that include orientation selectivity and firing-rate magnitude. Surprisingly, the manifolds for each visual area revealed novel relationships between how natural scenes are encoded relative to static gratings-a relationship that was conserved across visual areas. Namely, neurons preferring natural scenes preferred either low or high spatial frequency gratings, but not intermediate ones. Analyzing responses by cortical layer reveals a preference for gratings concentrated in layer 6, whereas preferences for natural scenes tended to be higher in layers 2/3 and 4. The results reveal how machine learning approaches can be used to organize and visualize the structure of sensory coding, thereby revealing novel relationships within and across brain areas and sensory stimuli.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527117/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.24.620089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A challenge in sensory neuroscience is understanding how populations of neurons operate in concert to represent diverse stimuli. To meet this challenge, we have created "encoding manifolds" that reveal the overall responses of brain areas to diverse stimuli with the resolution of individual neurons and their response dynamics. Here we use encoding manifold to compare the population-level encoding of primary visual cortex (VISp) with five higher visual areas (VISam, VISal, VISpm, VISlm, and VISrl). We used data from the Allen Institute Visual Coding-Neuropixels dataset from the mouse. We show that the encoding manifold topology computed only from responses to grating stimuli is continuous, for V1 and for higher visual areas, with smooth coordinates spanning it that include orientation selectivity and firing-rate magnitude. Surprisingly, the manifolds for each visual area revealed novel relationships between how natural scenes are encoded relative to static gratings-a relationship that was conserved across visual areas. Namely, neurons preferring natural scenes preferred either low or high spatial frequency gratings, but not intermediate ones. Analyzing responses by cortical layer reveals a preference for gratings concentrated in layer 6, whereas preferences for natural scenes tended to be higher in layers 2/3 and 4. The results reveal how machine learning approaches can be used to organize and visualize the structure of sensory coding, thereby revealing novel relationships within and across brain areas and sensory stimuli.

根据光栅反应构建的编码流形组织了大脑皮层视觉区域对自然场景的反应。
我们创建了 "编码流形 "来揭示脑区对各种刺激的整体反应。编码流形组织了全局的反应特性:编码流形上的每个点都是一个神经元,附近的神经元对刺激集合的时间反应类似。我们之前利用包括视流在内的大型刺激集合发现,视网膜的编码流形高度聚类,每个聚类对应不同的神经节细胞类型。相比之下,V1 流形的拓扑结构是连续的。现在,我们利用艾伦研究所小鼠视觉编码-神经像素数据集中单个神经元的反应,推断出了V1和五个高级皮层视觉区域(VISam、VISal、VISpm、VISlm和VISrl)的编码流形。我们在此表明,仅根据对各种光栅刺激的反应计算出的编码流形拓扑结构也是连续的,不仅对 V1 而且对高级视觉区域都是如此,其中的平滑坐标包括方向选择性和发射率大小。令人惊讶的是,光栅的编码流形也提供了有关自然场景反应的信息。为了研究神经元对光栅还是自然场景的反应更强烈,我们在编码流形上绘制了自然场景反应与光栅反应(平均发射率)的对比率。这揭示了一个组织神经元对这两种刺激的偏好的全局坐标轴。这个坐标与 VISp 中组织发射率大小的坐标是正交的(即不相关)。分析各层的反应,对光栅的偏好集中在第6层,而对自然景象的偏好则倾向于在第2/3层和第4层。我们还发现,对自然场景的偏好在偏好低(0.02 cpd)和高(0.32 cpd)空间频率的神经元的反应中占主导地位,而不是中间频率(0.04 至 0.16 cpd)。结论:虽然光栅似乎受到限制,而自然场景则不受制约,但机器学习算法可以揭示它们之间的微妙关系,而非线性技术所能及。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信