Computational design of bifaceted protein nanomaterials.

Sanela Rankovic, Kenneth D Carr, Justin Decarreau, Rebecca Skotheim, Ryan D Kibler, Sebastian Ols, Sangmin Lee, Jung-Ho Chun, Marti R Tooley, Justas Dauparas, Helen E Eisenach, Matthias Glögl, Connor Weidle, Andrew J Borst, David Baker, Neil P King
{"title":"Computational design of bifaceted protein nanomaterials.","authors":"Sanela Rankovic, Kenneth D Carr, Justin Decarreau, Rebecca Skotheim, Ryan D Kibler, Sebastian Ols, Sangmin Lee, Jung-Ho Chun, Marti R Tooley, Justas Dauparas, Helen E Eisenach, Matthias Glögl, Connor Weidle, Andrew J Borst, David Baker, Neil P King","doi":"10.1101/2024.10.18.619149","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in computational methods have led to considerable progress in the design of self-assembling protein nanoparticles. However, nearly all nanoparticles designed to date exhibit strict point group symmetry, with each subunit occupying an identical, symmetrically related environment. This limits the structural diversity that can be achieved and precludes anisotropic functionalization. Here, we describe a general computational strategy for designing multi-component bifaceted protein nanomaterials with two distinctly addressable sides. The method centers on docking pseudosymmetric heterooligomeric building blocks in architectures with dihedral symmetry and designing an asymmetric protein-protein interface between them. We used this approach to obtain an initial 30-subunit assembly with pseudo-D5 symmetry, and then generated an additional 15 variants in which we controllably altered the size and morphology of the bifaceted nanoparticles by designing <i>de novo</i> extensions to one of the subunits. Functionalization of the two distinct faces of the nanoparticles with <i>de novo</i> protein minibinders enabled specific colocalization of two populations of polystyrene microparticles coated with target protein receptors. The ability to accurately design anisotropic protein nanomaterials with precisely tunable structures and functions could be broadly useful in applications that require colocalizing two or more distinct target moieties.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.18.619149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in computational methods have led to considerable progress in the design of self-assembling protein nanoparticles. However, nearly all nanoparticles designed to date exhibit strict point group symmetry, with each subunit occupying an identical, symmetrically related environment. This limits the structural diversity that can be achieved and precludes anisotropic functionalization. Here, we describe a general computational strategy for designing multi-component bifaceted protein nanomaterials with two distinctly addressable sides. The method centers on docking pseudosymmetric heterooligomeric building blocks in architectures with dihedral symmetry and designing an asymmetric protein-protein interface between them. We used this approach to obtain an initial 30-subunit assembly with pseudo-D5 symmetry, and then generated an additional 15 variants in which we controllably altered the size and morphology of the bifaceted nanoparticles by designing de novo extensions to one of the subunits. Functionalization of the two distinct faces of the nanoparticles with de novo protein minibinders enabled specific colocalization of two populations of polystyrene microparticles coated with target protein receptors. The ability to accurately design anisotropic protein nanomaterials with precisely tunable structures and functions could be broadly useful in applications that require colocalizing two or more distinct target moieties.

计算设计具有可定制特性的双面蛋白质纳米材料。
计算方法的最新进展使得自组装蛋白质纳米粒子的设计取得了长足的进步。然而,迄今为止设计出的几乎所有纳米粒子都表现出严格的点群对称性,每个亚基都占据一个相同的、对称相关的环境。这一特性限制了可实现的结构多样性,并排除了各向异性的功能化。在这里,我们介绍了一种设计多组分双面蛋白质纳米材料的通用计算策略。该方法的核心是在具有二面对称性的结构中对接假对称异源构件,并在它们之间设计不对称的蛋白质-蛋白质界面。我们利用这种方法获得了具有伪 D5 对称性的 30 个初始亚基组装体,然后又生成了 15 个变体,在这些变体中,我们通过设计其中一个亚基的新扩展,可控地改变了双面纳米粒子的大小和形态。通过对纳米颗粒的两个不同表面进行功能化处理,使涂覆了目标蛋白受体的两组聚苯乙烯微颗粒发生特异性共定位。精确设计具有可调结构和功能的各向异性蛋白质纳米材料的能力将在需要将两个或多个不同目标分子共聚焦的应用中发挥广泛作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信