Recent Advances in Optimal Transport for Machine Learning.

Eduardo Fernandes Montesuma, Fred Maurice Ngole Mboula, Antoine Souloumiac
{"title":"Recent Advances in Optimal Transport for Machine Learning.","authors":"Eduardo Fernandes Montesuma, Fred Maurice Ngole Mboula, Antoine Souloumiac","doi":"10.1109/TPAMI.2024.3489030","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, Optimal Transport has been proposed as a probabilistic framework in Machine Learning for comparing and manipulating probability distributions. This is rooted in its rich history and theory, and has offered new solutions to different problems in machine learning, such as generative modeling and transfer learning. In this survey we explore contributions of Optimal Transport for Machine Learning over the period 2012 - 2023, focusing on four sub-fields of Machine Learning: supervised, unsupervised, transfer and reinforcement learning. We further highlight the recent development in computational Optimal Transport and its extensions, such as partial, unbalanced, Gromov and Neural Optimal Transport, and its interplay with Machine Learning practice.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3489030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Optimal Transport has been proposed as a probabilistic framework in Machine Learning for comparing and manipulating probability distributions. This is rooted in its rich history and theory, and has offered new solutions to different problems in machine learning, such as generative modeling and transfer learning. In this survey we explore contributions of Optimal Transport for Machine Learning over the period 2012 - 2023, focusing on four sub-fields of Machine Learning: supervised, unsupervised, transfer and reinforcement learning. We further highlight the recent development in computational Optimal Transport and its extensions, such as partial, unbalanced, Gromov and Neural Optimal Transport, and its interplay with Machine Learning practice.

机器学习最佳传输的最新进展。
最近,有人提出将最优传输作为机器学习中的概率框架,用于比较和处理概率分布。这源于其丰富的历史和理论,并为机器学习中的不同问题(如生成建模和迁移学习)提供了新的解决方案。在本调查报告中,我们将重点关注机器学习的四个子领域:有监督学习、无监督学习、迁移学习和强化学习,探讨 2012 - 2023 年期间机器学习优化传输的贡献。我们进一步强调了计算最优传输及其扩展(如部分、不平衡、格罗莫夫和神经最优传输)的最新发展,以及其与机器学习实践的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信