p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells.

IF 1.6 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Su-Jeong Choi, Giang-Huong Vu, Harsha Nagar, Seonhee Kim, Ikjun Lee, Shuyu Piao, Byeong Hwa Jeon, Kaikobad Irani, Sang-Ha Oh, Cuk-Seong Kim
{"title":"p66shc deficiency attenuates high glucose-induced autophagy dysfunction in Schwann cells.","authors":"Su-Jeong Choi, Giang-Huong Vu, Harsha Nagar, Seonhee Kim, Ikjun Lee, Shuyu Piao, Byeong Hwa Jeon, Kaikobad Irani, Sang-Ha Oh, Cuk-Seong Kim","doi":"10.4196/kjpp.24.155","DOIUrl":null,"url":null,"abstract":"<p><p>Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":"577"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.24.155","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Schwann cells are the most abundant cells in the peripheral nervous system, maintaining the development, function and regeneration of peripheral nerves. Defects in these Schwann cells injury response potentially contribute to the pathogenesis of diabetic peripheral neuropathy (DPN), a common complication of diabetes mellitus. The protein p66shc is essential in regulating oxidative stress responses, autophagy induction and cell survival, and is also vital in the development of DPN. In this study, we hypothesized that p66shc mediates high glucose-induced oxidative stress and autophagic dysfunction. In Schwann cells treated with high glucose; p66shc expression, levels of reactive oxygen species, autophagy impairment, and early apoptosis were elevated. Inhibition of p66shc gene expression by siRNA reversed high glucose-induced oxidative stress, autophagy impairment, and early apoptosis. We also demonstrated that the levels of p66shc was increased, while autophagy-related proteins p62 and LC3 (LC3-II/I) were suppressed in the sciatic nerve of streptozotocin-induced diabetes mice. P66shc-deficient mice exhibited the improvement in autophagy impairment after diabetes onset. Our findings suggest that the p66 plays a crucial role in Schwann cell dysfunction, identifying its potential as a therapeutic target.

p66shc 缺乏症可减轻高糖诱导的许旺细胞自噬功能障碍。
许旺细胞是周围神经系统中最丰富的细胞,维持着周围神经的发育、功能和再生。这些许旺细胞损伤反应的缺陷可能是糖尿病周围神经病变(DPN)的发病机制之一,而DPN是糖尿病的一种常见并发症。蛋白 p66shc 在调节氧化应激反应、自噬诱导和细胞存活方面至关重要,在 DPN 的发展过程中也至关重要。在本研究中,我们假设 p66shc 介导了高糖诱导的氧化应激和自噬功能障碍。在经高糖处理的许旺细胞中,p66shc 的表达、活性氧水平、自噬功能障碍和早期细胞凋亡均升高。通过 siRNA 抑制 p66shc 基因的表达可逆转高糖诱导的氧化应激、自噬功能障碍和早期细胞凋亡。我们还发现,在链脲佐菌素诱导的糖尿病小鼠坐骨神经中,p66shc的水平升高,而自噬相关蛋白p62和LC3(LC3-II/I)受到抑制。P66shc缺陷小鼠在糖尿病发病后自噬功能受损的情况有所改善。我们的研究结果表明,p66 在许旺细胞功能障碍中起着至关重要的作用,并确定了其作为治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Korean Journal of Physiology & Pharmacology
Korean Journal of Physiology & Pharmacology PHARMACOLOGY & PHARMACY-PHYSIOLOGY
CiteScore
3.20
自引率
5.00%
发文量
53
审稿时长
6-12 weeks
期刊介绍: The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信