Aditya Sen, Ambar Rodriguez-Martinez, Sara K Young-Baird, Rachel T Cox
{"title":"The Drosophila ribonucleoprotein Clueless is required for ribosome biogenesis in vivo.","authors":"Aditya Sen, Ambar Rodriguez-Martinez, Sara K Young-Baird, Rachel T Cox","doi":"10.1016/j.jbc.2024.107946","DOIUrl":null,"url":null,"abstract":"<p><p>As hubs of metabolism, mitochondria contribute critical processes to coordinate and optimize energy and intermediate metabolites. Drosophila Clueless (Clu) and vertebrate CLUH are ribonucleoproteins critical for supporting mitochondrial function yet do so in multiple ways. Clu/CLUH bind mRNAs and CLUH regulates mRNA localization and translation of mRNAs encoding proteins destined for mitochondrial import. In addition, Clu associates with ribosomal proteins and translation factors, yet whether it is required for fundamental ribosome function in vivo is not clear. In this study, we examine the Clu interactome and probe Clu's requirement in ribosome biogenesis. We previously showed that Clu associates with ribosomal proteins. In this study, we extend these observations to show that clu null mutants display a significant decrease in overall protein synthesis. In addition, Clu associates with ribosomal proteins in an mRNA-independent manner, suggesting Clu's core ribosomal function may be separate from its role in localizing and translating specific mRNAs. We find that Clu is present in the nucleus and associates with the ribosomal RNA (rRNA) processing protein fibrillarin but, surprisingly, that processed rRNA products are normal in the absence of Clu. Furthermore, Clu loss does not affect ribosomal protein levels, but does result in a decrease in 40S and 60S ribosomal subunits abundance. Together, these results demonstrate that Clu is present in the nucleus and required for 40S and 60S biogenesis and global translation in vivo. These results highlight the multifaceted role of Clu in supporting cell function through regulation of mRNA encoding mitochondrial proteins and ribosome biogenesis.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107946","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As hubs of metabolism, mitochondria contribute critical processes to coordinate and optimize energy and intermediate metabolites. Drosophila Clueless (Clu) and vertebrate CLUH are ribonucleoproteins critical for supporting mitochondrial function yet do so in multiple ways. Clu/CLUH bind mRNAs and CLUH regulates mRNA localization and translation of mRNAs encoding proteins destined for mitochondrial import. In addition, Clu associates with ribosomal proteins and translation factors, yet whether it is required for fundamental ribosome function in vivo is not clear. In this study, we examine the Clu interactome and probe Clu's requirement in ribosome biogenesis. We previously showed that Clu associates with ribosomal proteins. In this study, we extend these observations to show that clu null mutants display a significant decrease in overall protein synthesis. In addition, Clu associates with ribosomal proteins in an mRNA-independent manner, suggesting Clu's core ribosomal function may be separate from its role in localizing and translating specific mRNAs. We find that Clu is present in the nucleus and associates with the ribosomal RNA (rRNA) processing protein fibrillarin but, surprisingly, that processed rRNA products are normal in the absence of Clu. Furthermore, Clu loss does not affect ribosomal protein levels, but does result in a decrease in 40S and 60S ribosomal subunits abundance. Together, these results demonstrate that Clu is present in the nucleus and required for 40S and 60S biogenesis and global translation in vivo. These results highlight the multifaceted role of Clu in supporting cell function through regulation of mRNA encoding mitochondrial proteins and ribosome biogenesis.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.