Structural profiles of the full phagocyte NADPH oxidase unveiled by combining computational biology and experimental knowledge.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sana Aimeur, Burcu Aykac Fas, Xavier Serfaty, Hubert Santuz, Sophie Sacquin-Mora, Tania Bizouarn, Antoine Taly, Laura Baciou
{"title":"Structural profiles of the full phagocyte NADPH oxidase unveiled by combining computational biology and experimental knowledge.","authors":"Sana Aimeur, Burcu Aykac Fas, Xavier Serfaty, Hubert Santuz, Sophie Sacquin-Mora, Tania Bizouarn, Antoine Taly, Laura Baciou","doi":"10.1016/j.jbc.2024.107943","DOIUrl":null,"url":null,"abstract":"<p><p>The phagocyte NADPH oxidase (NOX2) is an enzyme, crucial for innate immune defense, producing reactive oxygen species necessary for pathogen destruction. Its activation requires the assembly of soluble proteins (p47<sup>phox</sup>, p40<sup>phox</sup>, p67<sup>phox</sup>, and Rac) with the membrane-bound flavocytochrome b<sub>558</sub> (cytb<sub>558</sub>). We combined circular-dichroism analyses, with decades of experimental data, to filter structural models of the NADPH oxidase complex generated by the artificial intelligence program AlphaFold2 (AF2). The predicted patterns tend to closely resemble the active states of the proteins, as shown by the compact structure of the cytb<sub>558</sub>, whose dehydrogenase domain is stabilized closer to the membrane. The modeling of the interaction of p47<sup>phox</sup> with cytb<sub>558</sub>, which is the initial assembly and activation steps of the NADPH oxidase, enables us to describe how the C-terminus of p47<sup>phox</sup> interacts with the cytb<sub>558</sub>. Combining the AF2 cytb<sub>558</sub> -p47<sup>phox</sup> model and its classical molecular dynamics simulations, we highlighted new hydrophobic lipid insertions of p47<sup>phox</sup>, particularly at residues Trp80-Phe81 of its PX domain. The AF2 models also revealed the implications of intrinsically disordered regions, such as the fragment between the PX domain and the SH3 regions of p47<sup>phox</sup>, in ensuring distant protein-protein and membrane-protein interactions. Finally, the AF2 prediction of the cytb<sub>558</sub>-Trimera model highlighted the importance of leaving Rac1 as a separate protein to reach an active state of the NADPH oxidase complex. Altogether, our step-by-step approach provides a structural model of the active complex showing how disordered regions and specific lipid and protein interactions can enable and stabilize the multi-subunit assembly.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107943","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The phagocyte NADPH oxidase (NOX2) is an enzyme, crucial for innate immune defense, producing reactive oxygen species necessary for pathogen destruction. Its activation requires the assembly of soluble proteins (p47phox, p40phox, p67phox, and Rac) with the membrane-bound flavocytochrome b558 (cytb558). We combined circular-dichroism analyses, with decades of experimental data, to filter structural models of the NADPH oxidase complex generated by the artificial intelligence program AlphaFold2 (AF2). The predicted patterns tend to closely resemble the active states of the proteins, as shown by the compact structure of the cytb558, whose dehydrogenase domain is stabilized closer to the membrane. The modeling of the interaction of p47phox with cytb558, which is the initial assembly and activation steps of the NADPH oxidase, enables us to describe how the C-terminus of p47phox interacts with the cytb558. Combining the AF2 cytb558 -p47phox model and its classical molecular dynamics simulations, we highlighted new hydrophobic lipid insertions of p47phox, particularly at residues Trp80-Phe81 of its PX domain. The AF2 models also revealed the implications of intrinsically disordered regions, such as the fragment between the PX domain and the SH3 regions of p47phox, in ensuring distant protein-protein and membrane-protein interactions. Finally, the AF2 prediction of the cytb558-Trimera model highlighted the importance of leaving Rac1 as a separate protein to reach an active state of the NADPH oxidase complex. Altogether, our step-by-step approach provides a structural model of the active complex showing how disordered regions and specific lipid and protein interactions can enable and stabilize the multi-subunit assembly.

结合计算生物学和实验知识,揭示完整吞噬细胞 NADPH 氧化酶的结构特征。
吞噬细胞 NADPH 氧化酶(NOX2)是一种对先天性免疫防御至关重要的酶,可产生消灭病原体所需的活性氧。它的激活需要可溶性蛋白(p47phox、p40phox、p67phox 和 Rac)与膜结合黄细胞色素 b558(cytb558)的组装。我们将圆二色谱分析与数十年的实验数据相结合,过滤了人工智能程序 AlphaFold2(AF2)生成的 NADPH 氧化酶复合物结构模型。如细胞b558的紧凑结构所示,其脱氢酶结构域稳定在更靠近膜的位置。p47phox 与细胞b558 的相互作用是 NADPH 氧化酶的初始组装和激活步骤,通过对 p47phox 与细胞b558 的相互作用建模,我们可以描述 p47phox 的 C 端如何与细胞b558 相互作用。结合 AF2 细胞b558 -p47phox 模型及其经典分子动力学模拟,我们强调了 p47phox 新的疏水性脂质插入,特别是在其 PX 结构域的 Trp80-Phe81 残基。AF2 模型还揭示了诸如 p47phox 的 PX 结构域和 SH3 区域之间的片段等内在无序区域在确保远距离蛋白质-蛋白质和膜-蛋白质相互作用方面的影响。最后,cytb558-Trimera 模型的 AF2 预测突显了让 Rac1 作为一个独立蛋白质以达到 NADPH 氧化酶复合物活性状态的重要性。总之,我们的逐步研究方法提供了一个活性复合体的结构模型,展示了无序区域和特定脂质与蛋白质的相互作用是如何促成和稳定多亚基组装的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信