Jacob E Petersen, Artem Pavlovskyi, Jesper J Madsen, Thue W Schwartz, Thomas M Frimurer, Ole H Olsen
{"title":"Molecular determinants of neuropeptide-mediated activation mechanisms in tachykinin NK1 and NK2 receptors.","authors":"Jacob E Petersen, Artem Pavlovskyi, Jesper J Madsen, Thue W Schwartz, Thomas M Frimurer, Ole H Olsen","doi":"10.1016/j.jbc.2024.107948","DOIUrl":null,"url":null,"abstract":"<p><p>Substance P and neurokinin A are closely related neuropeptides belonging to the tachykinin family. Their receptors are neurokinin 1 receptor (NK1R) and neurokinin 2 receptor (NK2R), G protein-coupled receptors that transmit G<sub>s</sub> and G<sub>q</sub>-mediated downstream signaling. We investigate the importance of sequence differences at the bottom of the receptor orthosteric site for activity and selectivity, focusing on residues that closely interact with the C-terminal methionine of the peptide ligands. We identify a conserved serine (NK1R-S297<sup>7.45</sup>) and the position of the tryptophan residue within the canonical \"toggle switch\" motif, CWxP of TM6, neighboring a phenylalanine in NK1R (NK1R-F264<sup>6.51</sup>) and a tyrosine in NK2R (NK2R-Y266<sup>6.51</sup>), giving rise to distinct micro-environments for the neuropeptide C-terminals. Mutating these residues results in dramatic activity changes in both NK1R and NK2R due to a close interaction between the ligand and toggle switch. Structural analysis of active and inactive NKR structures suggest only a minor change in sidechain rotation of toggle switch residues upon activation. However, extensive molecular dynamics simulations of receptor:neuropeptide:G protein complexes indicate that a major, concerted motion happens in the toggle switch tryptophan indole group and the sidechains of the micro-switch motif PIF. This rotation establishes a tight hydrogen bond interaction from the tryptophan indole to the conserved serine (NK1R-S297<sup>7.45</sup>) and a mainchain carbonyl (NK1R-A294<sup>7.41</sup>) in the kink of TM7. This interaction facilitates communication with the NPxxY micro-switch motif of TM7, resulting in stabilization of the G protein binding region. NK1R-S297<sup>7.45</sup> is consequently identified as a central hub for the activation of NKRs.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107948","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Substance P and neurokinin A are closely related neuropeptides belonging to the tachykinin family. Their receptors are neurokinin 1 receptor (NK1R) and neurokinin 2 receptor (NK2R), G protein-coupled receptors that transmit Gs and Gq-mediated downstream signaling. We investigate the importance of sequence differences at the bottom of the receptor orthosteric site for activity and selectivity, focusing on residues that closely interact with the C-terminal methionine of the peptide ligands. We identify a conserved serine (NK1R-S2977.45) and the position of the tryptophan residue within the canonical "toggle switch" motif, CWxP of TM6, neighboring a phenylalanine in NK1R (NK1R-F2646.51) and a tyrosine in NK2R (NK2R-Y2666.51), giving rise to distinct micro-environments for the neuropeptide C-terminals. Mutating these residues results in dramatic activity changes in both NK1R and NK2R due to a close interaction between the ligand and toggle switch. Structural analysis of active and inactive NKR structures suggest only a minor change in sidechain rotation of toggle switch residues upon activation. However, extensive molecular dynamics simulations of receptor:neuropeptide:G protein complexes indicate that a major, concerted motion happens in the toggle switch tryptophan indole group and the sidechains of the micro-switch motif PIF. This rotation establishes a tight hydrogen bond interaction from the tryptophan indole to the conserved serine (NK1R-S2977.45) and a mainchain carbonyl (NK1R-A2947.41) in the kink of TM7. This interaction facilitates communication with the NPxxY micro-switch motif of TM7, resulting in stabilization of the G protein binding region. NK1R-S2977.45 is consequently identified as a central hub for the activation of NKRs.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.