The 24-hour molecular landscape after exercise in humans reveals MYC is sufficient for muscle growth.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sebastian Edman, Ronald G Jones Iii, Paulo R Jannig, Rodrigo Fernandez-Gonzalo, Jessica Norrbom, Nicholas T Thomas, Sabin Khadgi, Pieter J Koopmans, Francielly Morena, Toby L Chambers, Calvin S Peterson, Logan N Scott, Nicholas P Greene, Vandre C Figueiredo, Christopher S Fry, Liu Zhengye, Johanna T Lanner, Yuan Wen, Björn Alkner, Kevin A Murach, Ferdinand von Walden
{"title":"The 24-hour molecular landscape after exercise in humans reveals MYC is sufficient for muscle growth.","authors":"Sebastian Edman, Ronald G Jones Iii, Paulo R Jannig, Rodrigo Fernandez-Gonzalo, Jessica Norrbom, Nicholas T Thomas, Sabin Khadgi, Pieter J Koopmans, Francielly Morena, Toby L Chambers, Calvin S Peterson, Logan N Scott, Nicholas P Greene, Vandre C Figueiredo, Christopher S Fry, Liu Zhengye, Johanna T Lanner, Yuan Wen, Björn Alkner, Kevin A Murach, Ferdinand von Walden","doi":"10.1038/s44319-024-00299-z","DOIUrl":null,"url":null,"abstract":"<p><p>A detailed understanding of molecular responses to a hypertrophic stimulus in skeletal muscle leads to therapeutic advances aimed at promoting muscle mass. To decode the molecular factors regulating skeletal muscle mass, we utilized a 24-h time course of human muscle biopsies after a bout of resistance exercise. Our findings indicate: (1) the DNA methylome response at 30 min corresponds to upregulated genes at 3 h, (2) a burst of translation- and transcription-initiation factor-coding transcripts occurs between 3 and 8 h, (3) changes to global protein-coding gene expression peaks at 8 h, (4) ribosome-related genes dominate the mRNA landscape between 8 and 24 h, (5) methylation-regulated MYC is a highly influential transcription factor throughout recovery. To test whether MYC is sufficient for hypertrophy, we periodically pulse MYC in skeletal muscle over 4 weeks. Transient MYC increases muscle mass and fiber size in the soleus of adult mice. We present a temporally resolved resource for understanding molecular adaptations to resistance exercise in muscle ( http://data.myoanalytics.com ) and suggest that controlled MYC doses influence the exercise-related hypertrophic transcriptional landscape.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00299-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A detailed understanding of molecular responses to a hypertrophic stimulus in skeletal muscle leads to therapeutic advances aimed at promoting muscle mass. To decode the molecular factors regulating skeletal muscle mass, we utilized a 24-h time course of human muscle biopsies after a bout of resistance exercise. Our findings indicate: (1) the DNA methylome response at 30 min corresponds to upregulated genes at 3 h, (2) a burst of translation- and transcription-initiation factor-coding transcripts occurs between 3 and 8 h, (3) changes to global protein-coding gene expression peaks at 8 h, (4) ribosome-related genes dominate the mRNA landscape between 8 and 24 h, (5) methylation-regulated MYC is a highly influential transcription factor throughout recovery. To test whether MYC is sufficient for hypertrophy, we periodically pulse MYC in skeletal muscle over 4 weeks. Transient MYC increases muscle mass and fiber size in the soleus of adult mice. We present a temporally resolved resource for understanding molecular adaptations to resistance exercise in muscle ( http://data.myoanalytics.com ) and suggest that controlled MYC doses influence the exercise-related hypertrophic transcriptional landscape.

人类运动后 24 小时的分子状况显示,MYC 足以促进肌肉生长。
详细了解骨骼肌对肥大刺激的分子反应有助于促进肌肉质量的治疗进展。为了解读调控骨骼肌质量的分子因素,我们利用了人体肌肉活检样本在阻力运动后 24 小时的时间过程。我们的研究结果表明:(1) 30 分钟时的 DNA 甲基组反应与 3 小时时的上调基因相对应;(2) 翻译和转录起始因子编码转录本的爆发发生在 3 到 8 小时之间;(3) 全局蛋白编码基因表达的变化在 8 小时达到峰值;(4) 核糖体相关基因在 8 到 24 小时之间主导 mRNA 的表达;(5) 甲基化调控的 MYC 是整个恢复过程中影响极大的转录因子。为了测试 MYC 是否足以促进肥大,我们在骨骼肌中定期脉冲 MYC 4 周。瞬时 MYC 增加了成年小鼠比目鱼肌的肌肉质量和纤维尺寸。我们为了解肌肉对阻力运动的分子适应提供了一个时间分辨率资源( http://data.myoanalytics.com ),并表明受控的 MYC 剂量会影响与运动相关的肥大转录景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信