Collective dynamics of swarmalators driven by a mobile pacemaker.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-11-01 DOI:10.1063/5.0223152
Xiaoxin Xu, Yichen Lu, Simin Wang, Jie Xu, Zhigang Zheng
{"title":"Collective dynamics of swarmalators driven by a mobile pacemaker.","authors":"Xiaoxin Xu, Yichen Lu, Simin Wang, Jie Xu, Zhigang Zheng","doi":"10.1063/5.0223152","DOIUrl":null,"url":null,"abstract":"<p><p>Swarmalators, namely, oscillators with intrinsic frequencies that are able to self-propel to move in space, may undergo collective spatial swarming and meanwhile phase synchronous dynamics. In this paper, a swarmalator model driven by an external mobile pacemaker is proposed to explore the swarming dynamics in the presence of the competition between the external organization of the moving pacemaker and the intrinsic self-organization among oscillators. It is unveiled that the swarmalator system may exhibit a wealth of novel spatiotemporal patterns including the spindle state, the ripple state, and the trapping state. Transitions among these patterns and the mechanisms are studied with the help of different order parameters. The phase diagrams present systematic scenarios of various possible collective swarming dynamics and the transitions among them. The present study indicates that one may manipulate the formation and switching of the organized collective states by adjusting the external driving force, which is expected to shed light on applications of swarming performance control in natural and artificial groups of active agents.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0223152","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Swarmalators, namely, oscillators with intrinsic frequencies that are able to self-propel to move in space, may undergo collective spatial swarming and meanwhile phase synchronous dynamics. In this paper, a swarmalator model driven by an external mobile pacemaker is proposed to explore the swarming dynamics in the presence of the competition between the external organization of the moving pacemaker and the intrinsic self-organization among oscillators. It is unveiled that the swarmalator system may exhibit a wealth of novel spatiotemporal patterns including the spindle state, the ripple state, and the trapping state. Transitions among these patterns and the mechanisms are studied with the help of different order parameters. The phase diagrams present systematic scenarios of various possible collective swarming dynamics and the transitions among them. The present study indicates that one may manipulate the formation and switching of the organized collective states by adjusting the external driving force, which is expected to shed light on applications of swarming performance control in natural and artificial groups of active agents.

由移动起搏器驱动的蜂群集体动力学
蜂群器(Swarmalators),即具有内在频率的振荡器,能够自我推动在空间移动,可能发生集体的空间蜂拥,同时发生相位同步动力学。本文提出了一个由外部移动起搏器驱动的蜂群模型,以探讨在移动起搏器的外部组织与振荡器之间的内在自组织竞争情况下的蜂群动力学。研究揭示了蜂群系统可能表现出大量新颖的时空模式,包括纺锤状态、波纹状态和诱捕状态。在不同阶参数的帮助下,研究了这些模式之间的转换和机制。相图系统地展示了各种可能的集体蜂群动力学情景以及它们之间的转换。本研究表明,人们可以通过调整外部驱动力来操纵有组织集体状态的形成和切换,这有望为蜂群性能控制在自然和人工活动物群中的应用提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信