Active fractal networks with stochastic force monopoles and force dipoles: Application to subdiffusion of chromosomal loci.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Sadhana Singh, Rony Granek
{"title":"Active fractal networks with stochastic force monopoles and force dipoles: Application to subdiffusion of chromosomal loci.","authors":"Sadhana Singh, Rony Granek","doi":"10.1063/5.0227341","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by the well-known fractal packing of chromatin, we study the Rouse-type dynamics of elastic fractal networks with embedded, stochastically driven, active force monopoles and force dipoles that are temporally correlated. We compute, analytically-using a general theoretical framework-and via Langevin dynamics simulations, the mean square displacement (MSD) of a network bead. Following a short-time superdiffusive behavior, force monopoles yield anomalous subdiffusion with an exponent identical to that of the thermal system. In contrast, force dipoles do not induce subdiffusion, and the early superdiffusive MSD crosses over to a relatively small, system-size-independent saturation value. In addition, we find that force dipoles may lead to \"crawling\" rotational motion of the whole network, reminiscent of that found for triangular micro-swimmers and consistent with general theories of the rotation of deformable bodies. Moreover, force dipoles lead to network collapse beyond a critical force strength, which persists with increasing system size, signifying a true first-order dynamical phase transition. We apply our results to the motion of chromosomal loci in bacteria and yeast cells' chromatin, where anomalous sub-diffusion, MSD∼tν with ν≃0.4, was found in both normal and cells depleted of adenosine triphosphate (ATP), albeit with different apparent diffusion coefficients. We show that the combination of thermal, monopolar, and dipolar forces in chromatin is typically dominated by the active monopolar and thermal forces, explaining the observed normal cells vs the ATP-depleted cells behavior.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0227341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the well-known fractal packing of chromatin, we study the Rouse-type dynamics of elastic fractal networks with embedded, stochastically driven, active force monopoles and force dipoles that are temporally correlated. We compute, analytically-using a general theoretical framework-and via Langevin dynamics simulations, the mean square displacement (MSD) of a network bead. Following a short-time superdiffusive behavior, force monopoles yield anomalous subdiffusion with an exponent identical to that of the thermal system. In contrast, force dipoles do not induce subdiffusion, and the early superdiffusive MSD crosses over to a relatively small, system-size-independent saturation value. In addition, we find that force dipoles may lead to "crawling" rotational motion of the whole network, reminiscent of that found for triangular micro-swimmers and consistent with general theories of the rotation of deformable bodies. Moreover, force dipoles lead to network collapse beyond a critical force strength, which persists with increasing system size, signifying a true first-order dynamical phase transition. We apply our results to the motion of chromosomal loci in bacteria and yeast cells' chromatin, where anomalous sub-diffusion, MSD∼tν with ν≃0.4, was found in both normal and cells depleted of adenosine triphosphate (ATP), albeit with different apparent diffusion coefficients. We show that the combination of thermal, monopolar, and dipolar forces in chromatin is typically dominated by the active monopolar and thermal forces, explaining the observed normal cells vs the ATP-depleted cells behavior.

具有随机力单极和力偶极的主动分形网络:染色体位点亚扩散的应用。
受众所周知的染色质分形堆积的启发,我们研究了具有嵌入式随机驱动的主动力单极和具有时间相关性的力偶极的弹性分形网络的劳斯型动力学。我们利用一般理论框架,并通过朗格文动力学模拟,对网络珠子的均方位移(MSD)进行了分析计算。在短时间超扩散行为之后,力单极产生了反常的亚扩散,其指数与热系统的指数相同。与此相反,力偶极子不会引起亚扩散,早期超扩散的 MSD 会跨越到一个相对较小的、与系统大小无关的饱和值。此外,我们还发现,力偶极子可能导致整个网络的 "爬行 "旋转运动,这让人联想到三角形微游泳者,并与可变形体旋转的一般理论相一致。此外,力偶极子会导致网络在超过临界力强度后坍塌,而这种坍塌会随着系统规模的增大而持续,这标志着真正的一阶动力学相变。我们将研究结果应用于细菌和酵母细胞染色质中染色体位点的运动,在正常细胞和缺失三磷酸腺苷(ATP)的细胞中发现了反常的亚扩散(MSD∼tν,ν≃0.4),尽管表观扩散系数不同。我们的研究表明,染色质中的热力、单极力和双极力通常由活跃的单极力和热力主导,这也解释了正常细胞与缺失 ATP 细胞的行为差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信