Xuan Liu, Huina Dong, Huiying Wang, Xinyi Ren, Xia Yang, Tingting Li, Gang Fu, Miaomiao Xia, Huan Fang, Guangqing Du, Zhaoxia Jin, Dawei Zhang
{"title":"Recent Advances in Genetic Engineering Strategies of <i>Sinorhizobium meliloti</i>.","authors":"Xuan Liu, Huina Dong, Huiying Wang, Xinyi Ren, Xia Yang, Tingting Li, Gang Fu, Miaomiao Xia, Huan Fang, Guangqing Du, Zhaoxia Jin, Dawei Zhang","doi":"10.1021/acssynbio.4c00348","DOIUrl":null,"url":null,"abstract":"<p><p><i>Sinorhizobium meliloti</i> is a free-living soil Gram-negative bacterium that participates in nitrogen-fixation symbiosis with several legumes. <i>S. meliloti</i> has the potential to be utilized for the production of high-value nutritional compounds, such as vitamin B<sub>12</sub>. Advances in gene editing tools play a vital role in the development of <i>S. meliloti</i> strains with enhanced characteristics for biotechnological applications. Several novel genetic engineering strategies have emerged in recent years to investigate genetic modifications in <i>S. meliloti</i>. This review provides a comprehensive overview of the mechanism and application of the extensively used Tn5-mediated genetic engineering strategies. Strategies based on homologous recombination and site-specific recombination were also discussed. Subsequently, the development and application of the genetic engineering strategies utilizing various CRISPR/Cas systems in <i>S. meliloti</i> are summarized. This review may stimulate research interest among scientists, foster studies in the application areas of <i>S. meliloti</i>, and serve as a reference for the utilization of genome editing tools for other Rhizobium species.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"3497-3506"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00348","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Sinorhizobium meliloti is a free-living soil Gram-negative bacterium that participates in nitrogen-fixation symbiosis with several legumes. S. meliloti has the potential to be utilized for the production of high-value nutritional compounds, such as vitamin B12. Advances in gene editing tools play a vital role in the development of S. meliloti strains with enhanced characteristics for biotechnological applications. Several novel genetic engineering strategies have emerged in recent years to investigate genetic modifications in S. meliloti. This review provides a comprehensive overview of the mechanism and application of the extensively used Tn5-mediated genetic engineering strategies. Strategies based on homologous recombination and site-specific recombination were also discussed. Subsequently, the development and application of the genetic engineering strategies utilizing various CRISPR/Cas systems in S. meliloti are summarized. This review may stimulate research interest among scientists, foster studies in the application areas of S. meliloti, and serve as a reference for the utilization of genome editing tools for other Rhizobium species.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.