Tyrosine modifications of insulin-degrading enzyme enable favorable control of substrate specificity for both Alzheimer's disease and type-2 diabetes mellitus.
{"title":"Tyrosine modifications of insulin-degrading enzyme enable favorable control of substrate specificity for both Alzheimer's disease and type-2 diabetes mellitus.","authors":"Yusuke Hatakawa, Yuki Takeuchi, Seon Hwa Lee, Tomoyuki Oe","doi":"10.1016/j.bioorg.2024.107916","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin-degrading enzyme (IDE) cleaves amyloid beta (Aβ), insulin, and other bioactive peptides. Because Aβ and insulin are closely related to Alzheimer's disease (AD) and type-2 diabetes mellitus (T2DM), respectively, IDE is a candidate drug target for treating both AD and T2DM. However, the activity of IDE has opposing effects, including decreasing AD risk by degrading Aβ and increasing T2DM risk by degrading insulin. The opposed substrate specificity is associated with the exo- and active sites containing Tyr<sup>314</sup> and Tyr<sup>831</sup> residues, the plausible modification targets for controlling substrate specificity. In this study, we used a tyrosine-specific modification regent, Cookson reagent (4-phenyl-1,2,4-triazoline-3,5-dione, PTAD), for IDE and examined the degradation activities on Aβ<sub>40</sub> and insulin. Fifteen tyrosine residues, including Tyr<sup>314</sup> and Tyr<sup>831</sup>, were modified by PTAD. After incubation with PTAD-modified IDE for 3 days, insulin remained intact, whereas Aβ<sub>40</sub> was completely degraded. This favorable change of substrate specificity was also observed in the mixture of Aβ<sub>40</sub> and insulin, suggesting that tyrosine modification of IDE might be a therapeutic strategy for AD and T2DM.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107916"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107916","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insulin-degrading enzyme (IDE) cleaves amyloid beta (Aβ), insulin, and other bioactive peptides. Because Aβ and insulin are closely related to Alzheimer's disease (AD) and type-2 diabetes mellitus (T2DM), respectively, IDE is a candidate drug target for treating both AD and T2DM. However, the activity of IDE has opposing effects, including decreasing AD risk by degrading Aβ and increasing T2DM risk by degrading insulin. The opposed substrate specificity is associated with the exo- and active sites containing Tyr314 and Tyr831 residues, the plausible modification targets for controlling substrate specificity. In this study, we used a tyrosine-specific modification regent, Cookson reagent (4-phenyl-1,2,4-triazoline-3,5-dione, PTAD), for IDE and examined the degradation activities on Aβ40 and insulin. Fifteen tyrosine residues, including Tyr314 and Tyr831, were modified by PTAD. After incubation with PTAD-modified IDE for 3 days, insulin remained intact, whereas Aβ40 was completely degraded. This favorable change of substrate specificity was also observed in the mixture of Aβ40 and insulin, suggesting that tyrosine modification of IDE might be a therapeutic strategy for AD and T2DM.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.