Xiaoting Li, Lucas A. N. Melo, Harmen J. Bussemaker
{"title":"Benchmarking and building DNA binding affinity models using allele-specific and allele-agnostic transcription factor binding data","authors":"Xiaoting Li, Lucas A. N. Melo, Harmen J. Bussemaker","doi":"10.1186/s13059-024-03424-2","DOIUrl":null,"url":null,"abstract":"Transcription factors (TFs) bind to DNA in a highly sequence-specific manner. This specificity manifests itself in vivo as differences in TF occupancy between the two alleles at heterozygous loci. Genome-scale assays such as ChIP-seq currently are limited in their power to detect allele-specific binding (ASB) both in terms of read coverage and representation of individual variants in the cell lines used. This makes prediction of allelic differences in TF binding from sequence alone desirable, provided that the reliability of such predictions can be quantitatively assessed. We here propose methods for benchmarking sequence-to-affinity models for TF binding in terms of their ability to predict allelic imbalances in ChIP-seq counts. We use a likelihood function based on an over-dispersed binomial distribution to aggregate evidence for allelic preference across the genome without requiring statistical significance for individual variants. This allows us to systematically compare predictive performance when multiple binding models for the same TF are available. To facilitate the de novo inference of high-quality models from paired-end in vivo binding data such as ChIP-seq, ChIP-exo, and CUT&Tag without read mapping or peak calling, we introduce an extensible reimplementation of our biophysically interpretable machine learning framework named PyProBound. Explicitly accounting for assay-specific bias in DNA fragmentation rate when training on ChIP-seq yields improved TF binding models. Moreover, we show how PyProBound can leverage our threshold-free ASB likelihood function to perform de novo motif discovery using allele-specific ChIP-seq counts. Our work provides new strategies for predicting the functional impact of non-coding variants.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"8 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03424-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription factors (TFs) bind to DNA in a highly sequence-specific manner. This specificity manifests itself in vivo as differences in TF occupancy between the two alleles at heterozygous loci. Genome-scale assays such as ChIP-seq currently are limited in their power to detect allele-specific binding (ASB) both in terms of read coverage and representation of individual variants in the cell lines used. This makes prediction of allelic differences in TF binding from sequence alone desirable, provided that the reliability of such predictions can be quantitatively assessed. We here propose methods for benchmarking sequence-to-affinity models for TF binding in terms of their ability to predict allelic imbalances in ChIP-seq counts. We use a likelihood function based on an over-dispersed binomial distribution to aggregate evidence for allelic preference across the genome without requiring statistical significance for individual variants. This allows us to systematically compare predictive performance when multiple binding models for the same TF are available. To facilitate the de novo inference of high-quality models from paired-end in vivo binding data such as ChIP-seq, ChIP-exo, and CUT&Tag without read mapping or peak calling, we introduce an extensible reimplementation of our biophysically interpretable machine learning framework named PyProBound. Explicitly accounting for assay-specific bias in DNA fragmentation rate when training on ChIP-seq yields improved TF binding models. Moreover, we show how PyProBound can leverage our threshold-free ASB likelihood function to perform de novo motif discovery using allele-specific ChIP-seq counts. Our work provides new strategies for predicting the functional impact of non-coding variants.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.