Quality control in manufacturing through temperature profile analysis of metal bars: A steel parts use case

Paolo Catti , Michalis Ntoulmperis , Vittoria Medici , Milena Martarelli , Nicola Paone , Wilhelm van de Kamp , Nikolaos Nikolakis , Kosmas Alexopoulos
{"title":"Quality control in manufacturing through temperature profile analysis of metal bars: A steel parts use case","authors":"Paolo Catti ,&nbsp;Michalis Ntoulmperis ,&nbsp;Vittoria Medici ,&nbsp;Milena Martarelli ,&nbsp;Nicola Paone ,&nbsp;Wilhelm van de Kamp ,&nbsp;Nikolaos Nikolakis ,&nbsp;Kosmas Alexopoulos","doi":"10.1016/j.procir.2024.10.036","DOIUrl":null,"url":null,"abstract":"<div><div>Non-uniform heating during metal bar hot forming may impact its straightness. In this study, an infrared non-destructive inspection system is proposed to acquire steel temperature profiles in runtime which should correlate to straightness deviations. Additionally, a machine learning algorithm detects outliers to identify oxides on the metal, which in turn is correlated to process parameters. This allows for proactive temperature adjustment to mitigate the risk based on historical profiles. The proposed approach has been tested in a use case coming from the steel industry.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827124011727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-uniform heating during metal bar hot forming may impact its straightness. In this study, an infrared non-destructive inspection system is proposed to acquire steel temperature profiles in runtime which should correlate to straightness deviations. Additionally, a machine learning algorithm detects outliers to identify oxides on the metal, which in turn is correlated to process parameters. This allows for proactive temperature adjustment to mitigate the risk based on historical profiles. The proposed approach has been tested in a use case coming from the steel industry.
通过金属棒的温度曲线分析进行生产质量控制:钢铁部件使用案例
金属棒热成型过程中的不均匀加热可能会影响其直线度。本研究提出了一种红外无损检测系统,用于在运行时获取钢材温度曲线,该曲线应与直线度偏差相关联。此外,机器学习算法可检测异常值,识别金属上的氧化物,进而与工艺参数相关联。这样就可以根据历史曲线主动调整温度,降低风险。所提出的方法已在钢铁行业的一个使用案例中进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信