Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sharmistha Chatterjee,  and , Parames C. Sil*, 
{"title":"Mechanistic Insights into Toxicity of Titanium Dioxide Nanoparticles at the Micro- and Macro-levels","authors":"Sharmistha Chatterjee,&nbsp; and ,&nbsp;Parames C. Sil*,&nbsp;","doi":"10.1021/acs.chemrestox.4c0023510.1021/acs.chemrestox.4c00235","DOIUrl":null,"url":null,"abstract":"<p >Titanium oxide nanoparticles (TiO<sub>2</sub> NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO<sub>2</sub> NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO<sub>2</sub>. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO<sub>2</sub> (&lt;30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO<sub>2</sub> NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO<sub>2</sub> NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00235","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium oxide nanoparticles (TiO2 NPs) have been regarded as a legacy nanomaterial due to their widespread usage across multiple fields. The TiO2 NPs have been and are still extensively used as a food and cosmetic additive and in wastewater and sewage treatment, paints, and industrial catalysis as ultrafine TiO2. Recent developments in nanotechnology have catapulted it into a potent antibacterial and anticancer agent due to its excellent photocatalytic potential that generates substantial amounts of highly reactive oxygen radicals. The method of production, surface modifications, and especially size impact its toxicity in biological systems. The anatase form of TiO2 (<30 nm) has been found to exert better and more potent cytotoxicity in bacteria as well as cancer cells than other forms. However, owing to the very small size, anatase particles are able to penetrate deep tissue easily; hence, they have also been implicated in inflammatory reactions and even as a potent oncogenic substance. Additionally, TiO2 NPs have been investigated to assess their toxicity to large-scale ecosystems owing to their excellent reactive oxygen species (ROS)-generating potential compounded with widespread usage over decades. This review discusses in detail the mechanisms by which TiO2 NPs induce toxic effects on microorganisms, including bacteria and fungi, as well as in cancer cells. It also attempts to shed light on how and why it is so prevalent in our lives and by what mechanisms it could potentially affect the environment on a larger scale.

Abstract Image

从微观和宏观层面透视二氧化钛纳米颗粒的毒性机理
氧化钛纳米粒子(TiO2 NPs)因其在多个领域的广泛应用而被视为一种传统的纳米材料。作为一种食品和化妆品添加剂、废水和污水处理、涂料和工业催化用超细二氧化钛,TiO2 NPs 已经并仍在广泛使用。纳米技术的最新发展使其成为一种有效的抗菌剂和抗癌剂,因为它具有出色的光催化潜力,能产生大量高活性氧自由基。生产方法、表面改性,尤其是尺寸大小,都会影响其在生物系统中的毒性。与其他形式的二氧化钛相比,锐钛型二氧化钛(30 纳米)对细菌和癌细胞具有更好、更强的细胞毒性。然而,由于锐钛矿颗粒的尺寸非常小,很容易穿透深层组织,因此也被认为与炎症反应有关,甚至是一种有效的致癌物质。此外,由于二氧化钛纳米粒子具有产生活性氧(ROS)的巨大潜力,再加上几十年来的广泛使用,人们已经对其进行了研究,以评估其对大规模生态系统的毒性。本综述详细讨论了二氧化钛纳米粒子对微生物(包括细菌和真菌)以及癌细胞产生毒性作用的机制。它还试图揭示二氧化钛如何以及为何如此普遍地存在于我们的生活中,以及它可能通过何种机制对环境产生更大规模的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信