Radio Map Reconstruction With Adaptive Spatial Feature Learning

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Jie Yang, Wenbin Guo
{"title":"Radio Map Reconstruction With Adaptive Spatial Feature Learning","authors":"Jie Yang,&nbsp;Wenbin Guo","doi":"10.1049/2024/7090832","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Radio map reconstruction is a fundamental problem of great relevance in numerous real-world applications, such as network planning and fingerprint localization. Sampling the complete radio map is prohibitively costly in practice and difficult to achieve. Such methods for reconstructing radio maps from a subset of measurements are now gaining additional attention. In this paper, we first explore the spatial features of signals on the radio map and formulate the reconstruction problem as an optimization problem with feature penalties. Then, we propose an iteration algorithm with spatial feature learning to reconstruct signals on the radio map, which improves the reconstruction accuracy by using an adaptive feature dictionary. Numerical examples are given to demonstrate the viability and performance of our method at last.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7090832","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/7090832","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Radio map reconstruction is a fundamental problem of great relevance in numerous real-world applications, such as network planning and fingerprint localization. Sampling the complete radio map is prohibitively costly in practice and difficult to achieve. Such methods for reconstructing radio maps from a subset of measurements are now gaining additional attention. In this paper, we first explore the spatial features of signals on the radio map and formulate the reconstruction problem as an optimization problem with feature penalties. Then, we propose an iteration algorithm with spatial feature learning to reconstruct signals on the radio map, which improves the reconstruction accuracy by using an adaptive feature dictionary. Numerical examples are given to demonstrate the viability and performance of our method at last.

Abstract Image

利用自适应空间特征学习重建无线电地图
无线电地图重构是一个基本问题,在网络规划和指纹定位等众多实际应用中具有重要意义。在实践中,对完整无线电地图进行采样的成本过高,而且难以实现。目前,这种从测量数据子集重建无线电地图的方法正受到越来越多的关注。在本文中,我们首先探讨了无线电地图上信号的空间特征,并将重建问题表述为一个带有特征惩罚的优化问题。然后,我们提出了一种带有空间特征学习的迭代算法来重建无线电地图上的信号,该算法通过使用自适应特征字典来提高重建精度。最后,我们给出了数值示例来证明我们方法的可行性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信