Global Small Analytic Solution of 3-D Anisotropic Navier-Stokes System

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Ning Liu, Ping Zhang
{"title":"Global Small Analytic Solution of 3-D Anisotropic Navier-Stokes System","authors":"Ning Liu,&nbsp;Ping Zhang","doi":"10.1007/s00205-024-02051-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove the global existence of analytic solution for 3D anisotropic Navier-Stokes system with initial data which is small and analytic in the vertical variable. We shall also prove that this solution will be analytic in the horizontal variables soon after <span>\\(t&gt;0.\\)</span> Furthermore, we show that the ratio between the analytic radius, <span>\\(R_\\textrm{h}(t),\\)</span> of the solution in the horizontal variables and <span>\\( \\sqrt{t}\\)</span> satisfies <span>\\(\\lim _{t\\rightarrow 0_+}\\frac{R_\\textrm{h}(t)}{\\sqrt{t}}=\\infty .\\)</span></p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02051-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the global existence of analytic solution for 3D anisotropic Navier-Stokes system with initial data which is small and analytic in the vertical variable. We shall also prove that this solution will be analytic in the horizontal variables soon after \(t>0.\) Furthermore, we show that the ratio between the analytic radius, \(R_\textrm{h}(t),\) of the solution in the horizontal variables and \( \sqrt{t}\) satisfies \(\lim _{t\rightarrow 0_+}\frac{R_\textrm{h}(t)}{\sqrt{t}}=\infty .\)

三维各向异性纳维-斯托克斯系统的全局小解析解
本文证明了三维各向异性纳维-斯托克斯(Navier-Stokes)系统的全局解析解的存在性,其初始数据很小,且在垂直变量中解析。我们还将证明,在 \(t>0 后不久,该解在水平变量中也将是解析的。\此外,我们还将证明解在水平变量中的解析半径\(R_\textrm{h}(t),\)与\(\sqrt{t}\)之间的比值满足\(\lim _{t\rightarrow 0_+}\frac{R_\textrm{h}(t)}{sqrt{t}}=\infty .\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信