Combinatorial 2d higher topological quantum field theory from a local cyclic \(A_\infty \) algebra

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Justin Beck, Andrey Losev, Pavel Mnev
{"title":"Combinatorial 2d higher topological quantum field theory from a local cyclic \\(A_\\infty \\) algebra","authors":"Justin Beck,&nbsp;Andrey Losev,&nbsp;Pavel Mnev","doi":"10.1007/s11005-024-01874-0","DOIUrl":null,"url":null,"abstract":"<div><p>We construct combinatorial analogs of 2d higher topological quantum field theories. We consider triangulations as vertices of a certain CW complex <span>\\(\\Xi \\)</span>. In the “flip theory,” cells of <span>\\(\\Xi _\\textrm{flip}\\)</span> correspond to polygonal decompositions obtained by erasing the edges in a triangulation. These theories assign to a cobordism <span>\\(\\Sigma \\)</span> a cochain <i>Z</i> on <span>\\(\\Xi _\\textrm{flip}\\)</span> constructed as a contraction of structure tensors of a cyclic <span>\\(A_\\infty \\)</span> algebra <i>V</i> assigned to polygons. The cyclic <span>\\(A_\\infty \\)</span> equations imply the closedness equation <span>\\((\\delta +Q)Z=0\\)</span>. In this context, we define combinatorial BV operators and give examples with coefficients in <span>\\(\\mathbb {Z}_2\\)</span>. In the “secondary polytope theory,” <span>\\(\\Xi _\\textrm{sp}\\)</span> is the secondary polytope (due to Gelfand–Kapranov–Zelevinsky) and the cyclic <span>\\(A_\\infty \\)</span> algebra has to be replaced by an appropriate refinement that we call an <span>\\(\\widehat{A}_\\infty \\)</span> algebra. We conjecture the existence of a good Pachner CW complex <span>\\(\\Xi \\)</span> for any cobordism, whose local combinatorics is described by secondary polytopes and the homotopy type is that of Zwiebach’s moduli space of complex structures. Depending on this conjecture, one has an “ideal model” of combinatorial 2d HTQFT determined by a local <span>\\(\\widehat{A}_\\infty \\)</span> algebra.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01874-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01874-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We construct combinatorial analogs of 2d higher topological quantum field theories. We consider triangulations as vertices of a certain CW complex \(\Xi \). In the “flip theory,” cells of \(\Xi _\textrm{flip}\) correspond to polygonal decompositions obtained by erasing the edges in a triangulation. These theories assign to a cobordism \(\Sigma \) a cochain Z on \(\Xi _\textrm{flip}\) constructed as a contraction of structure tensors of a cyclic \(A_\infty \) algebra V assigned to polygons. The cyclic \(A_\infty \) equations imply the closedness equation \((\delta +Q)Z=0\). In this context, we define combinatorial BV operators and give examples with coefficients in \(\mathbb {Z}_2\). In the “secondary polytope theory,” \(\Xi _\textrm{sp}\) is the secondary polytope (due to Gelfand–Kapranov–Zelevinsky) and the cyclic \(A_\infty \) algebra has to be replaced by an appropriate refinement that we call an \(\widehat{A}_\infty \) algebra. We conjecture the existence of a good Pachner CW complex \(\Xi \) for any cobordism, whose local combinatorics is described by secondary polytopes and the homotopy type is that of Zwiebach’s moduli space of complex structures. Depending on this conjecture, one has an “ideal model” of combinatorial 2d HTQFT determined by a local \(\widehat{A}_\infty \) algebra.

从局部循环(A_\infty \)代数出发的组合 2d 高等拓扑量子场论
我们构建了 2d 高等拓扑量子场论的组合类似物。我们把三角形视为某个 CW 复数 \(\Xi \)的顶点。在 "翻转理论 "中,(\Xi _textrm{flip}\)的单元对应于通过擦除三角剖分中的边而得到的多边形分解。这些理论为一个共线性(cobordism)分配了一个在(\Xi _textrm{flip}\)上的共链 Z,这个共链是作为分配给多边形的循环(A_\infty \)代数 V 的结构张量的收缩而构造的。循环(A_infty)方程意味着封闭性方程((\delta +Q)Z=0)。在这种情况下,我们定义了组合 BV 算子,并给出了系数在 \(\mathbb {Z}_2\) 中的例子。在 "二次多面体理论 "中,\(\Xi _textrm{sp}\)是二次多面体(归功于格尔夫兰-卡普拉诺夫-泽莱文斯基),而循环\(A_\infty \)代数必须被一个适当的细化取代,我们称之为\(\widehat{A}_\infty \)代数。我们猜想,对于任何协整,都存在一个好的帕赫纳 CW 复数 \(\Xi \),它的局部组合学由二次多面体描述,同调类型是兹维巴赫(Zwiebach)的复结构模空间。根据这个猜想,我们就有了一个由局部 \(\widehat{A}_\infty \) 代数决定的组合 2d HTQFT 的 "理想模型"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信