Zhivko Minchev, Beatriz Ramírez-Serrano, Laura Dejana, Ana S. Lee Díaz, Guadalupe Zitlalpopoca-Hernandez, Dimitri Orine, Haymanti Saha, Dimitra Papantoniou, Juan M. García, Alicia González-Céspedes, Paolina Garbeva, Nicole M. van Dam, Roxina Soler, David Giron, Ainhoa Martínez-Medina, Arjen Biere, Thure Hauser, Nicolai V. Meyling, Sergio Rasmann, María J. Pozo
{"title":"Beneficial soil fungi enhance tomato crop productivity and resistance to the leaf-mining pest Tuta absoluta in agronomic conditions","authors":"Zhivko Minchev, Beatriz Ramírez-Serrano, Laura Dejana, Ana S. Lee Díaz, Guadalupe Zitlalpopoca-Hernandez, Dimitri Orine, Haymanti Saha, Dimitra Papantoniou, Juan M. García, Alicia González-Céspedes, Paolina Garbeva, Nicole M. van Dam, Roxina Soler, David Giron, Ainhoa Martínez-Medina, Arjen Biere, Thure Hauser, Nicolai V. Meyling, Sergio Rasmann, María J. Pozo","doi":"10.1007/s13593-024-00991-3","DOIUrl":null,"url":null,"abstract":"<div><p>Research has shown that soil-borne beneficial microorganisms can enhance plant growth, productivity, and resistance against pests and pathogens and could thus serve as a sustainable alternative to agrochemicals. To date, however, the effect of soil-beneficial microbes under commercial crop production has been little assessed. We here investigated the effect of root inoculation with nine well-characterized bacterial and fungal strains and two consortia on tomato performance under intensive tomato crop management practices. We measured the impact of these root inoculations on plant growth, fruit quality, yield, and pest and pathogen incidence. While most microbial strains showed weak effects, we found that the fungal strains <i>Trichoderma afroharzianum</i> T22 and <i>Funneliformis mosseae</i> significantly increased marketable tomato yield. Moreover, we found that inoculation with most of the fungal strains led to a significant reduction in the incidence of the devastating leaf-mining pest <i>Tuta absoluta</i>, while this effect was not observed for bacterial inoculants. In addition, we found that microbial inoculations did not impact the incidence of introduced natural pest enemies, supporting their compatibility with well-established integrated pest management strategies in horticulture. In summary, the observed general positive effects of soil microbes on tomato yield and resistance reinforce the move toward broader adoption of microbial inoculants in future crop production, ultimately improving agricultural sustainability.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"44 6","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-024-00991-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy for Sustainable Development","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s13593-024-00991-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Research has shown that soil-borne beneficial microorganisms can enhance plant growth, productivity, and resistance against pests and pathogens and could thus serve as a sustainable alternative to agrochemicals. To date, however, the effect of soil-beneficial microbes under commercial crop production has been little assessed. We here investigated the effect of root inoculation with nine well-characterized bacterial and fungal strains and two consortia on tomato performance under intensive tomato crop management practices. We measured the impact of these root inoculations on plant growth, fruit quality, yield, and pest and pathogen incidence. While most microbial strains showed weak effects, we found that the fungal strains Trichoderma afroharzianum T22 and Funneliformis mosseae significantly increased marketable tomato yield. Moreover, we found that inoculation with most of the fungal strains led to a significant reduction in the incidence of the devastating leaf-mining pest Tuta absoluta, while this effect was not observed for bacterial inoculants. In addition, we found that microbial inoculations did not impact the incidence of introduced natural pest enemies, supporting their compatibility with well-established integrated pest management strategies in horticulture. In summary, the observed general positive effects of soil microbes on tomato yield and resistance reinforce the move toward broader adoption of microbial inoculants in future crop production, ultimately improving agricultural sustainability.
期刊介绍:
Agronomy for Sustainable Development (ASD) is a peer-reviewed scientific journal of international scope, dedicated to publishing original research articles, review articles, and meta-analyses aimed at improving sustainability in agricultural and food systems. The journal serves as a bridge between agronomy, cropping, and farming system research and various other disciplines including ecology, genetics, economics, and social sciences.
ASD encourages studies in agroecology, participatory research, and interdisciplinary approaches, with a focus on systems thinking applied at different scales from field to global levels.
Research articles published in ASD should present significant scientific advancements compared to existing knowledge, within an international context. Review articles should critically evaluate emerging topics, and opinion papers may also be submitted as reviews. Meta-analysis articles should provide clear contributions to resolving widely debated scientific questions.