{"title":"Prandtl-Batchelor flows on an annulus","authors":"Mingwen Fei , Chen Gao , Zhiwu Lin , Tao Tao","doi":"10.1016/j.aim.2024.109994","DOIUrl":null,"url":null,"abstract":"<div><div>For steady two-dimensional Navier-Stokes flows with a single eddy (i.e. nested closed streamlines) in a simply connected domain, Prandtl (1905) and Batchelor (1956) found that in the inviscid limit, the vorticity is constant inside the eddy. In this paper, we consider the generalized Prandtl-Batchelor theory for the forced steady Navier-Stokes equations on an annulus. First, we observe that in the limit of infinite Reynolds number, if the streamlines of forced steady Navier-Stokes solutions on an annulus are nested closed, then the inviscid limit is a rotating shear flow uniquely determined by the external force and boundary conditions. We call solutions of steady Navier-Stokes equations with the above property Prandtl-Batchelor flows. Then, by constructing higher order approximate solutions of the forced steady Navier-Stokes equations and establishing the validity of Prandtl boundary layer expansion, we give a rigorous proof of the existence of Prandtl-Batchelor flows on an annulus with the wall velocities slightly different from the rigid-rotations along the same direction.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824005103","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For steady two-dimensional Navier-Stokes flows with a single eddy (i.e. nested closed streamlines) in a simply connected domain, Prandtl (1905) and Batchelor (1956) found that in the inviscid limit, the vorticity is constant inside the eddy. In this paper, we consider the generalized Prandtl-Batchelor theory for the forced steady Navier-Stokes equations on an annulus. First, we observe that in the limit of infinite Reynolds number, if the streamlines of forced steady Navier-Stokes solutions on an annulus are nested closed, then the inviscid limit is a rotating shear flow uniquely determined by the external force and boundary conditions. We call solutions of steady Navier-Stokes equations with the above property Prandtl-Batchelor flows. Then, by constructing higher order approximate solutions of the forced steady Navier-Stokes equations and establishing the validity of Prandtl boundary layer expansion, we give a rigorous proof of the existence of Prandtl-Batchelor flows on an annulus with the wall velocities slightly different from the rigid-rotations along the same direction.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.