Irregular sampling for hyperbolic secant type functions

IF 1.5 1区 数学 Q1 MATHEMATICS
Anton Baranov , Yurii Belov
{"title":"Irregular sampling for hyperbolic secant type functions","authors":"Anton Baranov ,&nbsp;Yurii Belov","doi":"10.1016/j.aim.2024.109981","DOIUrl":null,"url":null,"abstract":"<div><div>We study Gabor frames in the case when the window function is of hyperbolic secant type, i.e., <span><math><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>a</mi><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>b</mi><mi>x</mi></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, <span><math><mrow><mi>Re</mi></mrow><mspace></mspace><mi>a</mi><mo>,</mo><mrow><mi>Re</mi></mrow><mspace></mspace><mi>b</mi><mo>&gt;</mo><mn>0</mn></math></span>. A criterion for half-regular sampling is obtained: for a separated <span><math><mi>Λ</mi><mo>⊂</mo><mi>R</mi></math></span> the Gabor system <span><math><mi>G</mi><mo>(</mo><mi>g</mi><mo>,</mo><mi>Λ</mi><mo>×</mo><mi>α</mi><mi>Z</mi><mo>)</mo></math></span> is a frame in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> if and only if <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>(</mo><mi>Λ</mi><mo>)</mo><mo>&gt;</mo><mi>α</mi></math></span> where <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>(</mo><mi>Λ</mi><mo>)</mo></math></span> is the usual (Beurling) lower density of Λ. This extends a result by Gröchenig, Romero, and Stöckler which applies to the case of a standard hyperbolic secant. Also, a full description of complete interpolating sequences for the shift-invariant space generated by <em>g</em> is given.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"458 ","pages":"Article 109981"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824004973","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study Gabor frames in the case when the window function is of hyperbolic secant type, i.e., g(x)=(eax+ebx)1, Rea,Reb>0. A criterion for half-regular sampling is obtained: for a separated ΛR the Gabor system G(g,Λ×αZ) is a frame in L2(R) if and only if D(Λ)>α where D(Λ) is the usual (Beurling) lower density of Λ. This extends a result by Gröchenig, Romero, and Stöckler which applies to the case of a standard hyperbolic secant. Also, a full description of complete interpolating sequences for the shift-invariant space generated by g is given.
双曲正割型函数的不规则采样
我们研究的是窗口函数为双曲正割类型时的 Gabor 框架,即 g(x)=(eax+e-bx)-1, Rea,Reb>0。我们得到了一个半规则采样的标准:对于分离的Λ⊂R,Gabor 系统 G(g,Λ×αZ) 是 L2(R) 中的一个框架,当且仅当 D-(Λ)>α 其中 D-(Λ) 是Λ的通常(Beurling)低密度。这扩展了格罗切尼格、罗梅罗和斯托克勒的一个结果,该结果适用于标准双曲正割的情况。此外,还给出了由 g 生成的移位不变空间的完整插值序列的完整描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信