Penetrative convection in Navier–Stokes-Voigt fluid induced by internal heat source

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Puneet Rana , Mahanthesh Basavarajappa
{"title":"Penetrative convection in Navier–Stokes-Voigt fluid induced by internal heat source","authors":"Puneet Rana ,&nbsp;Mahanthesh Basavarajappa","doi":"10.1016/j.chaos.2024.115689","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the phenomenon of penetrative convection in a viscoelastic fluid described by the Navier-Stokes-Kelvin-Voigt (NSKV) model, incorporating internal heat sources and realistic rigid boundary conditions. We examine four distinct space-dependent heat source distributions: constant, linearly increasing, decreasing, and non-uniform across the fluid layer. The Kelvin-Voigt fluid layer is simultaneously heated and salted from the bottom. We employ both linear instability analysis using normal mode technique and nonlinear stability analysis through energy method. The resulting differential eigenvalue systems are treated using the Chebyshev-Spectral-QZ method. Our investigation focuses on the effects of the internal heating parameter, Kelvin-Voigt number, and solute Rayleigh number on the threshold values for convection onset. Our results reveal that internal heat sources destabilize the fluid system, while the salt Rayleigh number contributes to system stabilization. Nonlinear analysis reveals that the total energy of perturbations to the steady-state conduction solutions decays exponentially, and the decay rate is stronger for the Kelvin-Voigt fluid than for Newtonian fluid. Furthermore, the Kelvin-Voigt number acts as a stabilizing factor for the onset of convection, exerting a stabilizing effect on the system. Importantly, the thresholds obtained from linear and nonlinear theories differ in both the presence and absence of internal heat sources, suggesting the existence of a subcritical instability region (SIR). This comprehensive analysis provides new insights into the complex dynamics of penetrative convection in viscoelastic fluids with internal heating.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115689"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012414","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the phenomenon of penetrative convection in a viscoelastic fluid described by the Navier-Stokes-Kelvin-Voigt (NSKV) model, incorporating internal heat sources and realistic rigid boundary conditions. We examine four distinct space-dependent heat source distributions: constant, linearly increasing, decreasing, and non-uniform across the fluid layer. The Kelvin-Voigt fluid layer is simultaneously heated and salted from the bottom. We employ both linear instability analysis using normal mode technique and nonlinear stability analysis through energy method. The resulting differential eigenvalue systems are treated using the Chebyshev-Spectral-QZ method. Our investigation focuses on the effects of the internal heating parameter, Kelvin-Voigt number, and solute Rayleigh number on the threshold values for convection onset. Our results reveal that internal heat sources destabilize the fluid system, while the salt Rayleigh number contributes to system stabilization. Nonlinear analysis reveals that the total energy of perturbations to the steady-state conduction solutions decays exponentially, and the decay rate is stronger for the Kelvin-Voigt fluid than for Newtonian fluid. Furthermore, the Kelvin-Voigt number acts as a stabilizing factor for the onset of convection, exerting a stabilizing effect on the system. Importantly, the thresholds obtained from linear and nonlinear theories differ in both the presence and absence of internal heat sources, suggesting the existence of a subcritical instability region (SIR). This comprehensive analysis provides new insights into the complex dynamics of penetrative convection in viscoelastic fluids with internal heating.
内热源诱导 Navier-Stokes-Voigt 流体中的穿透对流
本研究探讨了由纳维-斯托克斯-开尔文-伏依格特(NSKV)模型描述的粘弹性流体中的穿透对流现象,其中包含内部热源和现实的刚性边界条件。我们研究了四种不同的随空间变化的热源分布:恒定、线性增加、递减和整个流体层的非均匀分布。开尔文-伏依格特流体层同时从底部加热和加盐。我们采用法模技术进行线性不稳定性分析,并通过能量法进行非线性稳定性分析。由此产生的微分特征值系统采用切比雪夫-谱-QZ 方法进行处理。我们的研究重点是内部加热参数、开尔文-伏依格特数和溶质雷利数对对流开始阈值的影响。我们的研究结果表明,内部热源会破坏流体系统的稳定性,而盐的雷利数则有助于系统的稳定。非线性分析表明,对稳态传导解的扰动总能量呈指数衰减,开尔文-伏依格特流体的衰减率比牛顿流体更强。此外,开尔文-伏依格特数是对流开始时的一个稳定因子,对系统起着稳定作用。重要的是,在存在和不存在内部热源的情况下,线性理论和非线性理论得到的阈值都不同,这表明存在亚临界不稳定区域(SIR)。这一综合分析为我们提供了关于具有内部加热的粘弹性流体中穿透对流复杂动力学的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信