{"title":"Compound Poisson distributions for random dynamical systems using probabilistic approximations","authors":"Lucas Amorim , Nicolai Haydn , Sandro Vaienti","doi":"10.1016/j.spa.2024.104511","DOIUrl":null,"url":null,"abstract":"<div><div>We obtain quenched hitting distributions to be compound Poissonian for a certain class of random dynamical systems. The theory is general and designed to accommodate non-uniformly expanding behavior and targets that do not overlap much with the region where uniformity breaks. Based on annealed and quenched polynomial decay of correlations, our quenched result adopts annealed Kac-type time-normalization and finds limits to be noise-independent. The technique involves a probabilistic block-approximation where the quenched hit-counting function up to annealed Kac-normalized time is split into equally sized blocks which are mimicked by an independency of random variables distributed just like each of them. The theory is made operational due to a result that allows certain hitting quantities to be recovered from return quantities. Our application is to a class of random piecewise expanding one-dimensional systems, casting new light on the well-known deterministic dichotomy between periodic and aperiodic points, their usual extremal index formula <span><math><mrow><mo>EI</mo><mo>=</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>J</mi><msup><mrow><mi>T</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, and recovering the Polya–Aeppli case for general Bernoulli-driven systems, but distinct behavior otherwise.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104511"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002199","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We obtain quenched hitting distributions to be compound Poissonian for a certain class of random dynamical systems. The theory is general and designed to accommodate non-uniformly expanding behavior and targets that do not overlap much with the region where uniformity breaks. Based on annealed and quenched polynomial decay of correlations, our quenched result adopts annealed Kac-type time-normalization and finds limits to be noise-independent. The technique involves a probabilistic block-approximation where the quenched hit-counting function up to annealed Kac-normalized time is split into equally sized blocks which are mimicked by an independency of random variables distributed just like each of them. The theory is made operational due to a result that allows certain hitting quantities to be recovered from return quantities. Our application is to a class of random piecewise expanding one-dimensional systems, casting new light on the well-known deterministic dichotomy between periodic and aperiodic points, their usual extremal index formula , and recovering the Polya–Aeppli case for general Bernoulli-driven systems, but distinct behavior otherwise.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.