{"title":"Coarsening in zero-range processes","authors":"Inés Armendáriz , Johel Beltrán , Daniela Cuesta , Milton Jara","doi":"10.1016/j.spa.2024.104507","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a fluid limit describing coarsening for zero-range processes on a finite number of sites, with asymptotically constant jump rates. When time and occupation per site are linearly rescaled by the total number of particles, the evolution of the process is described by a piecewise linear trajectory in the simplex indexed by the sites. The linear coefficients are determined by the trace process of the underlying random walk on the subset of non-empty sites, and the trajectory reaches an absorbing configuration in finite time. A boundary of the simplex is called absorbing for the fluid limit if a trajectory started at a configuration in the boundary remains in it for all times. We identify the set of absorbing configurations and characterize the absorbing boundaries.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"179 ","pages":"Article 104507"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002151","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We prove a fluid limit describing coarsening for zero-range processes on a finite number of sites, with asymptotically constant jump rates. When time and occupation per site are linearly rescaled by the total number of particles, the evolution of the process is described by a piecewise linear trajectory in the simplex indexed by the sites. The linear coefficients are determined by the trace process of the underlying random walk on the subset of non-empty sites, and the trajectory reaches an absorbing configuration in finite time. A boundary of the simplex is called absorbing for the fluid limit if a trajectory started at a configuration in the boundary remains in it for all times. We identify the set of absorbing configurations and characterize the absorbing boundaries.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.