{"title":"Enhanced densification and phase transformations during rapid microwave sintering of alumina – yttria-stabilized zirconia ceramics","authors":"S.V. Egorov , A.G. Eremeev , V.V. Kholoptsev , K.I. Rybakov , A.A. Sorokin , S.S. Balabanov , E.Ye. Rostokina","doi":"10.1016/j.jeurceramsoc.2024.117006","DOIUrl":null,"url":null,"abstract":"<div><div>Alumina – 7.5 wt% yttria-stabilized zirconia (YSZ) ceramic composites were sintered using 24 GHz microwave heating at rates of 10 – 200 °C/min with zero isothermal hold. The starting powders were nanophase η-Al<sub>2</sub>O<sub>3</sub> and YSZ prepared by a laser evaporation method. The final densities of the sintered samples were up to 97.5 % of the theoretical value. The samples exhibited rapid densification until transformation to the α-Al<sub>2</sub>O<sub>3</sub> phase. The temperature of the densification rate peak (and hence of the phase transformation) decreased consistently with increasing microwave electromagnetic field intensity (varied by using different susceptor materials). The densification peak temperature difference between microwave and conventional sintering experiments exceeded 200 °C.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 117006"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008793","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Alumina – 7.5 wt% yttria-stabilized zirconia (YSZ) ceramic composites were sintered using 24 GHz microwave heating at rates of 10 – 200 °C/min with zero isothermal hold. The starting powders were nanophase η-Al2O3 and YSZ prepared by a laser evaporation method. The final densities of the sintered samples were up to 97.5 % of the theoretical value. The samples exhibited rapid densification until transformation to the α-Al2O3 phase. The temperature of the densification rate peak (and hence of the phase transformation) decreased consistently with increasing microwave electromagnetic field intensity (varied by using different susceptor materials). The densification peak temperature difference between microwave and conventional sintering experiments exceeded 200 °C.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.